8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

. ----------8分由題意可知 查看更多

 

題目列表(包括答案和解析)

(理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,以的中點(diǎn)為球心、為直徑的球面交于點(diǎn).

(1) 求證:平面平面

(2)求點(diǎn)到平面的距離.  

證明:(1)由題意,在以為直徑的球面上,則

平面,則

,平面,

平面,

∴平面平面.       (3分)

(2)∵的中點(diǎn),則點(diǎn)到平面的距離等于點(diǎn)到平面的距離的一半,由(1)知,平面,則線段的長(zhǎng)就是點(diǎn)到平面的距離

 

     ∵在中,

     ∴的中點(diǎn),                 (7分)

     則點(diǎn)到平面的距離為                 (8分)

    (其它方法可參照上述評(píng)分標(biāo)準(zhǔn)給分)

 

 

查看答案和解析>>

(理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,以的中點(diǎn)為球心、為直徑的球面交于點(diǎn).
(1) 求證:平面平面;
(2)求點(diǎn)到平面的距離.  
證明:(1)由題意,在以為直徑的球面上,則

平面,則
,平面,

平面,
∴平面平面.      (3分)
(2)∵的中點(diǎn),則點(diǎn)到平面的距離等于點(diǎn)到平面的距離的一半,由(1)知,平面,則線段的長(zhǎng)就是點(diǎn)到平面的距離
 
∵在中,
的中點(diǎn),                (7分)
則點(diǎn)到平面的距離為                (8分)
(其它方法可參照上述評(píng)分標(biāo)準(zhǔn)給分)

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),;

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnxgx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點(diǎn).

(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[

【解析】第一問中因?yàn)橹本經(jīng)過(guò)點(diǎn),0),所以,得.又因?yàn)閙>1,所以,故直線的方程為

第二問中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>


同步練習(xí)冊(cè)答案