8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

以直線y= -x+1與坐標軸的交點為焦點的拋物線的標準方程為( )A x2=4y或y2=4x B x2=2y或y2=2xC x2=-4y或y2=-4x D x2=2y或y2=-2x 查看更多

 

題目列表(包括答案和解析)

以直線y=-x+1與坐標軸的交點為焦點的拋物線的標準方程為


  1. A.
    x2=-4y或y2=-4x
  2. B.
    x2=4y或y2=4x
  3. C.
    x2=2y或y2=2x
  4. D.
    x2=2y或y2=-2x

查看答案和解析>>

以直線y=-x+1與坐標軸的交點為焦點的拋物線的標準方程為

[  ]

A.x2=-4y或y2=-4x

B.x2=4y或y2=4x

C.x2=2y或y2=2x

D.x2=2y或y2=-2x

查看答案和解析>>

在直角坐標系xoy中,已知三點A(-1,0),B(1,0),C(-1,
3
2
);以A、B為焦點的橢圓經(jīng)過C點,
(1)求橢圓方程;
(2)設(shè)點D(0,1),是否存在不平行于x軸的直線l,與橢圓交于不同的兩點M、N,使(
PM
+
PN
)•
MN
=0?
若存在.求出直線l斜率的取值范圍;
(3)對于y軸上的點P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點M、N,使(
PM
+
PN
)•
MN
=0,試求實數(shù)n的取值范圍.

查看答案和解析>>

中心在坐標原點、焦點在x軸上的橢圓,它的離心率為
3
2
,與直線x+y-1=0相交于M、N兩點,若以MN為直徑的圓經(jīng)過坐標原點,求橢圓方程.

查看答案和解析>>

中心在坐標原點,焦點在x軸上的橢圓,它的離心率為,與直線x+y-1=0相交于兩點M、N,且以為直徑的圓經(jīng)過坐標原點.求橢圓的方程.

查看答案和解析>>

一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

二.11、-3;.12、1;13、14、15、

三.16.解:

……(2’)

整理得:……………………………(4’)

又A為銳角,…………………(6’)

(2)由(1)知………………………(7’)

……………………………(12’)

當B=600時,Y取得最大值!(13’)

 17. 設(shè)答對題的個數(shù)為y,得分為,y=0,1,2,4 ,=0,2,4,8………(1’)

,       ,

  • <cite id="liyn4"><rp id="liyn4"><form id="liyn4"></form></rp></cite>

          0

          2

          4

          8

          P

           

          的分布列為

          …………………………………10分

            

           

           

           

          (2)E=…………………………12分

          答:該人得分的期望為2分……………………………………………………13分

          18. 解:(1)取AC中點D,連結(jié)SD、DB.

          ∵SA=SC,AB=BC,

          ∴AC⊥SD且AC⊥BD,

          ∴AC⊥平面SDB,又SB平面SDB,

          ∴AC⊥SB-----------4分

          (2)∵AC⊥平面SDB,AC平面ABC,

          ∴平面SDB⊥平面ABC.

          過N作NE⊥BD于E,NE⊥平面ABC,

          過E作EF⊥CM于F,連結(jié)NF,

          則NF⊥CM.

          ∴∠NFE為二面角N-CM-B的平面角---------------6分

          ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

          又∵NE⊥平面ABC,∴NE∥SD.

          ∵SN=NB,

          ∴NE=SD===, 且ED=EB.

          在正△ABC中,由平幾知識可求得EF=MB=,

          在Rt△NEF中,tan∠NFE==2,

          ∴二面角N―CM―B的大小是arctan2-----------------------8分

          (3)在Rt△NEF中,NF==,

          ∴S△CMN=CM?NF=,

          S△CMB=BM?CM=2-------------11分

          設(shè)點B到平面CMN的距離為h,

          ∵VB-CMN=VN-CMB,NE⊥平面CMB,

          S△CMN?h=S△CMB?NE,∴h==.

          即點B到平面CMN的距離為--------13分

          19. (1)解:當0<t≤10時,
            是增函數(shù),且                3分
            當20<t≤40時,是減函數(shù),且                    6分
            所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘                7分

          (2)解:,所以,講課開始25分鐘時,學生的注意力比講課開始后5分鐘更集中 9分

          (3)當0<t≤10時,令得:                   10分
            當20<t≤40時,令得:                      12分
            則學生注意力在180以上所持續(xù)的時間
            所以,經(jīng)過適當安排,老師可以在學生達到所需要的狀態(tài)下講授完這道題         14分

           

          20.解:

          (1)設(shè)

          最大值為。故

          ………………………(6’)

          (2)由橢圓離心率得雙曲線

          設(shè)……………(7’)

          ①     當AB⊥x軸時,

          .…………(9’)

          ②當時.

          ………………………………………………(12’)

          同在內(nèi)……………(13’)

          =

          =有成立。…………………………(14’).

          21. (1)
            當a≥0時,在[2,+∞)上恒大于零,即,符合要求;      2分
              當a<0時,令,g (x)在[2,+∞)上只能恒小于零
            故△=1+4a≤0或,解得:a≤
            ∴a的取值范圍是                                     6分

          (2)a = 0時,
            當0<x<1時,當x>1時,∴              8分

          (3)反證法:假設(shè)x1 = b>1,由
              ∴
            故
             ,即 、
            又由(2)當b>1時,,∴
            與①矛盾,故b≤1,即x1≤1
            同理可證x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分