8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅰ) 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請(qǐng)證明;否則,說(shuō)明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)在如圖的坐標(biāo)系中作出同時(shí)滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
(Ⅱ)若實(shí)數(shù)x,y滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)
x+yx
的取值范圍.精英家教網(wǎng)

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

一、選擇題

1.選D。提示:在映射f作用下,四邊形ABCD整體平移,面積不變

2,4,6

3.選B。提示:3的對(duì)面的數(shù)字是6,4 的對(duì)面的數(shù)字是2,故

4.選B。提示:設(shè)A∪B元素個(gè)數(shù)為y,可知10≤y≤16, y∈N,又由x = 18-y可得。

5.選A。提示: 可知一條對(duì)稱軸。

6.選A。提示:依題意:課外興趣味小組由4名女生2名男生組成,共有種選法.其概率為

7.選C。提示:設(shè)代入,記

,,,

8.選A。提示:  

9.選B。提示:原方程兩邊立方并整理得,,顯然,,由于 上是增函數(shù),且,所以

10.選C。提示:①正確;②正確,即為公垂線AB的中垂面;③正確,過(guò)AB中點(diǎn) 的平行線,則的平分線符合條件;④不正確,關(guān)于對(duì)稱的兩條異面線段的中點(diǎn)與共線。

二、填空題

11.。提示:最小系數(shù)為。

12.。提示:,

13.11.提示:,,取。

14.。提示:由已知,,即,由線性規(guī)劃知識(shí)知,當(dāng),時(shí)達(dá)到最大值。

15.。提示:令,則,因?yàn)?sub>,所以

          <cite id="dk693"><rp id="dk693"><form id="dk693"></form></rp></cite>
          <style id="dk693"></style><sub id="dk693"></sub>

            <var id="dk693"></var>
            <style id="dk693"></style>

              0

              1

              2

               

               

               

               

               

               

                     。

              17.。提示:令,得;令,得;令,得;令,得;故。

              三、解答題

              18.解:(I)

              ――――7分

              (II)因?yàn)?sub>為銳角,且,所以。――――9分

              ――14分

              19.解:(I)因?yàn)?sub>平面,

              所以平面平面,

              ,所以平面,

              ,又

              所以平面;――――4分

              (II)因?yàn)?sub>,所以四邊形為 

              菱形,

              ,又中點(diǎn),知。

              中點(diǎn),則平面,從而面

                     過(guò),則,

                     在中,,故,

                     即到平面的距離為。――――9分

                     (III)過(guò),連,則,

                     從而為二面角的平面角,

                     在中,,所以,

              中,,

                     故二面角的大小為。14分

               

                     解法2:(I)如圖,取的中點(diǎn),則,因?yàn)?sub>,

                     所以,又平面,

                     以軸建立空間坐標(biāo)系,

                     則,,,

              ,

              ,,

              ,由,知,

                     又,從而平面;――――4分

                     (II)由,得。

                     設(shè)平面的法向量為,,所以

              ,設(shè),則

                     所以點(diǎn)到平面的距離。――9分

                     (III)再設(shè)平面的法向量為,,

                     所以

              ,設(shè),則,

                     故,根據(jù)法向量的方向,

                     可知二面角的大小為。――――14分

              20.解:(I)設(shè),則,因?yàn)?sub> ,可得;又由

                     可得點(diǎn)的軌跡的方程為。――――6分(沒(méi)有扣1分)

                     (II)假設(shè)存在直線,代入并整理得

              ,――――8分

                     設(shè),則   ――――10分

                     又

                    

              ,解得――――13分

                     特別地,若,代入得,,此方程無(wú)解,即

                     綜上,的斜率的取值范圍是。――――14分

              21.解:(I)

                     (1)當(dāng)時(shí),函數(shù)增函數(shù),

                     此時(shí),,

              ,所以;――2分

                     (2)當(dāng)時(shí),函數(shù)減函數(shù),此時(shí),,

              ,所以;――――4分

                     (3)當(dāng)時(shí),若,則,有

                     若,則,有;

                     因此,,――――6分

                     而

                     故當(dāng)時(shí),,有;

                     當(dāng)時(shí),,有;――――8分

              綜上所述:。――――10分

                     (II)畫(huà)出的圖象,如右圖。――――12分

                     數(shù)形結(jié)合,可得。――――14分

              22.解: (Ⅰ)先用數(shù)學(xué)歸納法證明,.

                     (1)當(dāng)n=1時(shí),由已知得結(jié)論成立;

                     (2)假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即.則當(dāng)n=k+1時(shí),

                     因?yàn)?<x<1時(shí),,所以f(x)在(0,1)上是增函數(shù).

                     又f(x)在上連續(xù),所以f(0)<f()<f(1),即0<.

                     故當(dāng)n=k+1時(shí),結(jié)論也成立. 即對(duì)于一切正整數(shù)都成立.――――4分

                     又由, 得,從而.

                     綜上可知――――6分

                     (Ⅱ)構(gòu)造函數(shù)g(x)=-f(x)= , 0<x<1,

                     由,知g(x)在(0,1)上增函數(shù).

                     又g(x)在上連續(xù),所以g(x)>g(0)=0.

                  因?yàn)?sub>,所以,即>0,從而――――10分

                     (Ⅲ) 因?yàn)?,所以, ,

                     所以   ――――① , ――――12分

                     由(Ⅱ)知:,  所以= ,

                     因?yàn)?sub>, n≥2,

                  所以 <<=――――② .  ――――14分

                     由①② 兩式可知: .――――16分