題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點
.
(1)求函數(shù)的解析式(2)求函數(shù)
在區(qū)間
上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓
的兩個焦點,O為坐標原點,點
在橢圓上,且
,圓O是以
為直徑的圓,直線
與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一、選擇題:本大題共12小題,每小題5分,共60分。
CABD CDDC BABD
二、填空題:本大題共4小題,每小題4分,共16分。
13.3 14.1200 15. 16.
三、解答題:本大題共6小題,共74分。
17.解: 1分
∵,∴
⊥
,∴∠
在Rt△ADC中 4分
∴ 6分
∵ 7分
又∵ 9分
∴
12分
18.解:(1)當(dāng)=7時,甲贏意味著“第七次甲贏,前6次贏5次,但根據(jù)規(guī)則,前5次中必輸1次”,由規(guī)則,每次甲贏或乙贏的概率均為
,因此
=
4分
(2)設(shè)游戲終止時骰子向上的點數(shù)是奇數(shù)出現(xiàn)的次數(shù)為,向上的點數(shù)是偶數(shù)出現(xiàn)的次數(shù)為n,則由
,可得:當(dāng)
或
,
時,
當(dāng)
,
或
因此
的可能取值是5、7、9 6分
每次投擲甲贏得乙一個福娃與乙贏得甲一個福娃的可能性相同,其概率都是
10分
所以的分布列是:
5
7
9
12分
19.解:設(shè)數(shù)列的公比為
(1)若,則
顯然不成等差數(shù)列,與題設(shè)條件矛盾,所以
≠1 1分
由成等差數(shù)列,得
化簡得 4分
∴ 5分
(2)解法1: 6分
當(dāng)≥2時,
10分
=1+ 12分
解法2: 6分
當(dāng)≥2時,設(shè)
這里
,為待定常數(shù)。
則
當(dāng)n≥2時,易知數(shù)列為單調(diào)遞增數(shù)列,所以
可見,n≥2時,
于是,n≥2時,有 10分
=1+ 12分
20.解法一:如圖建立空間直角坐標系,
(1)有條件知 1分
由面⊥面ABC,AA1⊥A
2分
∵ ……………3分
∴與
不垂直,即AA1與BC不垂直,
∴AA1與平面A1BC不垂直……5分
(2)由ACC
知=
=
…7分
設(shè)平面BB,
由
令,則
9分
另外,平面ABC的法向量(0,0,1) 10分
所以側(cè)面BB 12分
解法二:(1)取AC中點D,連結(jié)A1D,則A1D⊥AC。
又∵側(cè)面ACC
∵A1D⊥面ABC ………2分
∴A1D⊥BC。
假設(shè)AA1與平面A1BC垂直,則A1D⊥BC。
又A1D⊥BC,由線面垂直的判定定理,
BC⊥面A
有兩個直角,與三角形內(nèi)角和定理矛盾。假設(shè)不
成立,所以AA1不與平面A1BC垂直………5分
(2)側(cè)面BB
過點C作A
過點E作B
因為B
所以∠CFE即為所求側(cè)面BB
由得
在Rt△ABC中,cos∠
所以,側(cè)面BB 12分
21.(1)設(shè)與
在公共點
處的切線相同。
。由題意知
即 2分
解得或
(舍去,)
4分
可見
7分
(2)
要使在(0,4)上單調(diào),
須在(0,4)上恒成立 8分
在(0,4)上恒成立
在(0,4)上恒成立。
而且
可為足夠小的正數(shù),必有
9分
在(0,4)上恒成立
或 11分
綜上,所求的取值范圍為
,或
,或
12分
22.(1)∵點A的坐標為(
)
&
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com