8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(1)求甲答對試題數(shù)的分布列及數(shù)學(xué)期望, (2)求甲.乙兩人至少有一人入選的概率. 查看更多

 

題目列表(包括答案和解析)

在一次數(shù)學(xué)與語文兩門功課的聯(lián)合考試中,備有6道數(shù)學(xué)題,4道語文題,共10道題可選擇,要求學(xué)生從中任意選取5道題作答,答對其中4道或5道即為良好成績,設(shè)隨機變量ξ為所選5道題中語文題的個數(shù).

(1)求隨機變量ξ的分布列及數(shù)學(xué)期望;

(2)若學(xué)生甲隨機選定5道題,且答對任意一道題的概率為0.6,求學(xué)生甲取得良好成績的概率.(精確到小數(shù)點以后兩位)

查看答案和解析>>

如圖所示的莖葉圖記錄了甲、乙兩個小組(每小組4人)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以a表示.已知甲、乙兩個小組的數(shù)學(xué)成績的平均分相同.

(1)求a的值;

(2)求乙組四名同學(xué)數(shù)學(xué)成績的方差;

(3)分別從甲、乙兩組同學(xué)中各隨機選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)成績之差的絕對值為X,求隨機變量X的分布列和均值(數(shù)學(xué)期望).

(溫馨提示:答題前請仔細閱讀卷首所給的計算公式及其說明.)

查看答案和解析>>

 

如圖4所示的莖葉圖記錄了甲、乙兩個小組(每小組4人)在期末考試中

的數(shù)學(xué)成績.乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以表示.

已知甲、乙兩個小組的數(shù)學(xué)成績的平均分相同.

(1)求的值;

(2)求乙組四名同學(xué)數(shù)學(xué)成績的方差;

(3)分別從甲、乙兩組同學(xué)中各隨機選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)

成績之差的絕對值為,求隨機變量的分布列和均值(數(shù)學(xué)期望).

 

(溫馨提示:答題前請仔細閱讀卷首所給的計算公式及其說明.)

 

 

查看答案和解析>>

甲、乙兩人同時參加奧運志愿者選拔賽的考試,已知在備選的10道題中,甲能答對其中的6道題,乙能答對其中的8道題.規(guī)定每次考試都從備選題中隨機抽出3道題進行測試,至少答對2道題才能入選.
(I)求甲答對試題數(shù)ξ的分布列及數(shù)學(xué)期望;
(II)求甲、乙兩人至少有一人入選的概率.

查看答案和解析>>

甲、乙兩人同時參加奧運志愿者選拔賽的考試,已知在備選的10道題中,甲能答對其中的6道題,乙能答對其中的8道題.規(guī)定每次考試都從備選題中隨機抽出3道題進行測試,至少答對2道題才能入選.
(I)求甲答對試題數(shù)ξ的分布列及數(shù)學(xué)期望;
(II)求甲、乙兩人至少有一人入選的概率.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當

       因此,當時,

      

       當,

           12分

18.解:(1)依題意,甲答對主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因為事件A、B相互獨立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過點E作EG交CF于G,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因為平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)過點B作交FE的延長線于H,

       連結(jié)AH,BH。

       由平面

    <style id="i9pfy"></style><center id="i9pfy"></center>

             所以為二面角A―EF―C的平面角

            

             又因為

             所以CF=4,從而BE=CG=3。

             于是    10分

             在

             則

             因為

               解法二:(1)如圖,以點C為坐標原點,

               建立空間直角坐標系

               設(shè)

               則

              

               于是

         

         

         

         

        20.解:(1)當時,由已知得

              

               同理,可解得   4分

           (2)解法一:由題設(shè)

               當

               代入上式,得     (*) 6分

               由(1)可得

               由(*)式可得

               由此猜想:   8分

               證明:①當時,結(jié)論成立。

               ②假設(shè)當時結(jié)論成立,

               即

               那么,由(*)得

              

               所以當時結(jié)論也成立,

               根據(jù)①和②可知,

               對所有正整數(shù)n都成立。

               因   12分

               解法二:由題設(shè)

               當

               代入上式,得   6分

              

              

               -1的等差數(shù)列,

              

                  12分

        21.解:(1)由橢圓C的離心率

               得,其中,

               橢圓C的左、右焦點分別為

               又點F2在線段PF1的中垂線上

              

               解得

                  4分

           (2)由題意,知直線MN存在斜率,設(shè)其方程為

               由

               消去

               設(shè)

               則

               且   8分

               由已知,

               得

               化簡,得     10分

              

               整理得

        * 直線MN的方程為,     

               因此直線MN過定點,該定點的坐標為(2,0)    12分

        22.解:   2分

           (1)由已知,得上恒成立,

               即上恒成立

               又

                  4分

           (2)當時,

               在(1,2)上恒成立,

               這時在[1,2]上為增函數(shù)

                

               當

               在(1,2)上恒成立,

               這時在[1,2]上為減函數(shù)

              

               當時,

               令 

               又 

                   9分

               綜上,在[1,2]上的最小值為

               ①當

               ②當時,

               ③當   10分

           (3)由(1),知函數(shù)上為增函數(shù),

               當

              

               即恒成立    12分

              

              

              

               恒成立    14分

        <output id="i9pfy"></output>