題目列表(包括答案和解析)
請(qǐng)考生在第22、23、24題中任選一題做答,如果多做,則按所
做的第一題記分.做答時(shí),用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的[來(lái)源:學(xué)科網(wǎng)ZXXK]
題號(hào)涂黑.
22.選修4-1:幾何證明選講
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE??BF=BC??BD
23.選修4-4:坐標(biāo)系與參數(shù)方程
在拋物線y2=4a(x+a)(a>0),設(shè)有過(guò)原點(diǎn)O作一直線分別
交拋物線于A、B兩點(diǎn),如圖所示,試求|OA|??|OB|的最小值。
24.選修4—5;不等式選講
設(shè)|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤
選答題(本小題滿分10分)(請(qǐng)考生在第22、23、24三道題中任選一題做答,并用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑。注意所做題號(hào)必須與所涂題目的題號(hào)一致,并在答題卡指定區(qū)域答題。如果多做,則按所做的第一題計(jì)分。)
22.選修4-1:幾何證明選講
如圖,已知是⊙
的切線,
為切點(diǎn),
是⊙
的割線,與⊙
交于
兩點(diǎn),圓心
在
的內(nèi)部,點(diǎn)
是
的中點(diǎn)。
(1)證明四點(diǎn)共圓;
(2)求的大小。
23.選修4—4:坐標(biāo)系與參數(shù)方程[來(lái)源:學(xué)科網(wǎng)ZXXK]
已知直線經(jīng)過(guò)點(diǎn)
,傾斜角
。
(1)寫出直線的參數(shù)方程;
(2)設(shè)與曲線
相交于兩點(diǎn)
,求點(diǎn)
到
兩點(diǎn)的距離之積。
24.選修4—5:不等式證明選講
若不等式與不等式
同解,而
的解集為空集,求實(shí)數(shù)
的取值范圍。
或
或7 ………………………………14分
16.(本小題滿分14分)
(1)證明:E、P分別為AC、A′C的中點(diǎn),
EP∥A′A,又A′A
平面AA′B,EP
平面AA′B
∴即EP∥平面A′FB …………………………………………5分
(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC
∴BC⊥A′E,∴BC⊥平面A′EC
BC平面A′BC
∴平面A′BC⊥平面A′EC …………………………………………9分
(3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,
在△A′AC中,EP∥A′A,∴A′A⊥A′C
由(2)知:BC⊥平面A′EC 又A′A平面A′EC
∴BC⊥AA′
∴A′A⊥平面A′BC …………………………………………14分
∴
…………………………………………15分
(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)
18.(本小題滿分15分)
(1)延長(zhǎng)BD、CE交于A,則AD=,AE=2
則S△ADE= S△BDE= S△BCE=
∵S△APQ=,∴
∴
…………………………………………7分
(2)
=?
…………………………………………12分
當(dāng),
即,
…………………………………………15分
(3)
設(shè)上式為 ,假設(shè)
取正實(shí)數(shù),則
?
當(dāng)時(shí),
,
遞減;
當(dāng),
,
遞增. ……………………………………12分
∴不存在正整數(shù),使得
即
…………………………………………16分
,
顯然成立
……………………………………12分
當(dāng)時(shí),
,
使不等式
成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3
……………………………………………16分
泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考
高三數(shù)學(xué)試題參考答案
附加題部分
度單位.(1)
,
,由
得
.
所以.
即為圓
的直角坐標(biāo)方程. ……………………………………3分
同理為圓
的直角坐標(biāo)方程. ……………………………………6分
(2)由
相減得過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分
D.證明:(1)因?yàn)?sub>
所以
…………………………………………4分
(2)∵ …………………………………………6分
同理,,
……………………………………8分
三式相加即得……………………………10分
22.(必做題)(本小題滿分10分)
解:(1)記“恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為
…………………………………………4分
答:恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為
(1)
,
,
,
,
……………………………………3分
(2)平面BDD1的一個(gè)法向量為
設(shè)平面BFC1的法向量為
∴
取得平面BFC1的一個(gè)法向量
∴所求的余弦值為
……………………………………6分
(3)設(shè)(
)
,由
得
即,
當(dāng)
時(shí),
當(dāng)時(shí),∴
……………………………………10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com