題目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
| ||
4 |
3
| ||
5 |
x2 |
a2 |
y2 |
b2 |
| ||
4 |
3
| ||
5 |
如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m.經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60m處,點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸),.以
所在直線為
軸,以
所在直線為
軸建立平面直角坐標(biāo)系.
(Ⅰ)求所在直線的方程及新橋BC的長(zhǎng);
(Ⅱ)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?
并求此時(shí)圓的方程.
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求與
的值;
(Ⅱ)設(shè)是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線
的切線
,直線
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為
, 直線
與
軸交點(diǎn)為
,連接
交拋物線
于
、
兩點(diǎn),求△
的面積
的取值范圍.
【解析】第一問(wèn)中利用圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問(wèn)中,由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
第三問(wèn)中,設(shè)直線,代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設(shè)圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線
的方程為
.
令,得切線
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線
上.…(2分)
(Ⅲ)設(shè)直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com