題目列表(包括答案和解析)
已知中,
,
.設(shè)
,記
.
(1) 求的解析式及定義域;
(2)設(shè),是否存在實數(shù)
,使函數(shù)
的值域為
?若存在,求出
的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在中,由
,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得
.顯然,
,則
1當m>0的值域為
m+1=3/2,n=1/2
2當m<0,不滿足
的值域為
;
因而存在實數(shù)m=1/2的值域為
.
如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進,以后又改成正東方向航行,但不知最初的方向和何時改變方向.現(xiàn)要去營救,請用圖表示營救的區(qū)域.
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=
(Ⅰ)求角B的大。
(Ⅱ)設(shè)=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理
=2acosB,所以cosB=
,B=
第二問中,m=(sin(C+),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+-
=-
+2ksinA+
=-
+
(k>1).
而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-
=3,得k=
.
在中,已知
,面積
,
(1)求的三邊的長;
(2)設(shè)是
(含邊界)內(nèi)的一點,
到三邊
的距離分別是
①寫出所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識求出的取值范圍.
【解析】第一問中利用設(shè)中角
所對邊分別為
由得
又由得
即
又由得
即
又
又
得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結(jié)合區(qū)域得到最值。
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設(shè),由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設(shè)M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com