題目列表(包括答案和解析)
3 |
![]() |
AB |
![]() |
BC |
![]() |
DB |
![]() |
CD |
選作題,請考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分,每道題滿分10分)
22、選修4—1:幾何證明選講
如圖,△ABC的角平分線AD的延長線交于的外按圓于點E。
(I)證明:△ABC∽△ADC
(II)若△ABC的面積為AD·AE,求∠BAC的大小。
23、選修4—4:坐標系與參數(shù)方程
已知半圓C的參數(shù)方程為參數(shù)且(0≤
≤
)
P為半圓C上一點,A(1,0)O為坐標原點,點M在射線OP上,線段OM與 的長度均為
。
(I)求以O(shè)為極點,軸為正半軸為極軸建立極坐標系求點M的極坐標。
(II)求直線AM的參數(shù)方程。
24、選修4—5,不等式選講
已知函數(shù)
(I)若不等式的解集為
求a值。
(II)在(I) 條件下,若對一切實數(shù)
恒成立,求實數(shù)m的取值范圍。
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.B 3.D 4.A 5.C 6.B 7.D 8.C
二、填空題(本大題共6小題,每小題5分,共30分)
9. (
) 10.12000
11.4 12.144 13.
14.
15.
三、解答題(本大題共6小題,共80分)
16.(本小題滿分12分)
解:(Ⅰ)…………………………………2分
……………………………………………………3分
………………………………………………………5分
∴函數(shù)的最小正周期
…………………………………………6分
(Ⅱ)當時,
………………………………………8分
∴當即
時,函數(shù)
單調(diào)遞增……………………10分
當即
時,函數(shù)
單調(diào)遞減……………………12分
17.(本小題滿分12分)
解:∵作品數(shù)量共有50件,∴…………①……………………2分
(Ⅰ)從表中可以看出,“藝術(shù)與創(chuàng)新為4分且功能與實用為3分”的作品數(shù)量為6件,
∴“藝術(shù)與創(chuàng)新為4分且功能與實用為3分”的概率為……………4分
(Ⅱ)由表可知“功能與實用”得分有1分、2分、3分、4分、5分五個等級,且每個等級分別有5件,
件,15件,15件,
年。
∴“功能與實用”得分的分布列為:
1
2
3
4
5
…………………………………8分
又∵“功能與實用”得分的數(shù)學(xué)期望為,
∴
與①式聯(lián)立可解得:,
……………………12分
18.(本小題滿分14分)
解:(Ⅰ)在中,
,
,∴
,
……1分
在中,
,
,∴
,
…………2分
∴…………4分
則…………………………………………5分
(Ⅱ)∵平面
,∴
…………………………6分
又
,
,
∴平面
………………………7分
∵、
分別為
、
中點,
∴………………………8分
∴平面
………………………9分
∵平面
,∴平面
平面
………………………10分
(Ⅲ)取的中點
,連結(jié)
,則
,
∴平面
,過
作
于
,
連接,則
為二面角
的平面角。
…………………………12分
∵為
的中點,
,
,
∴,又
,
∴,故
即三面角的大小為
…………………………14分
19.(本小題滿分14分)
解:由函數(shù)得,
………………3分
(Ⅰ) 若為區(qū)間
上的“凸函數(shù)”,則有
在區(qū)間
上恒成立,由二次函數(shù)的圖像,當且僅當
,
即. …………………………………………………7分
(Ⅱ)當時,
恒成立
當
時,
恒成立.……………………………………………………………………………8分
當時,
顯然成立。 …………………………………9分
當,
∵的最小值是
.
∴.
從而解得 …………………………………………………………………11分
當,
∵的最大值是
,∴
,
從而解得. ………………………………………………………………13分
綜上可得,從而
………………………………14分
20.(本小題滿分14分)
解:(Ⅰ)∵拋物線的焦點為
(
),………………………1分
∴………………………………………………………………………2分
∴,所求方程為
………………………………………4分
(Ⅱ)設(shè)動圓圓心為,(其中
),
、
的坐標分別為
,
因為圓過
,故設(shè)圓的方程
……………6分
∵、
是圓
和
軸的交點
∴令得:
…………………………………………………8分
則,
…………………10分
又∵圓心在拋物線
上
∴ …………………………………………………………………11分
∴………………………………….12分
∴當時,
(定值). ……………………………………………14分
21.(本小題滿分14分)
解:(Ⅰ)若為等比數(shù)列,則存在
,使
對
成立!2分
由已知:,代入上式,整理得
………①……………4分
∵①式對成立,
∴解得
……………………………………5分
∴當,
時,數(shù)列
是公比為2的等比數(shù)列…………6分
(Ⅱ)證明:由(Ⅰ)得:,即
所以……………………………8分
∵…………………………9分
時,
…………………………11分
現(xiàn)證:(
)
證法1:
當時,
,
而,
,故
時成立!12分
時,由
且得,
,∴
…………………14分
證法2:
時
個
∴……………………………………14分
證法3:
(1)時,
,故
時不等式成立……………………12分
(2)假設(shè)(
)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com