題目列表(包括答案和解析)
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當(dāng),即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時,同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時,函數(shù)
的圖象恒在直線
下方.
1 |
x2+x-6 |
1 |
2 |
3 |
π |
3 |
π |
6 |
(本題滿分16分)第(1)小題滿分6分,第(2)小題滿分5分,第(3)小題滿分5分。
已知函數(shù)。
(1)當(dāng)時,畫出函數(shù)
的大致圖像,并寫出其單調(diào)遞增區(qū)間;
(2)若函數(shù)在
上是單調(diào)遞減函數(shù),求實數(shù)
的取值范圍;
(3)若不等式對
恒成立,求實數(shù)
的取值范圍.
![]() |
(本題滿分16分)第(1)小題滿分6分,第(2)小題滿分5分,第(3)小題滿分5分。
已知函數(shù)。
(1)當(dāng)時,畫出函數(shù)
的大致圖像,并寫出其單調(diào)遞增區(qū)間;
(2)若函數(shù)在
上是單調(diào)遞減函數(shù),求實數(shù)
的取值范圍;
(3)若不等式對
恒成立,求實數(shù)
的取值范圍.
![]() |
(本小題16分)
探究函數(shù)的最大值,并確定取得最大值時
的值.列表如下:
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
請觀察表中值隨
值變化的特點,完成以下的問題.
(1)函數(shù)在區(qū)間 上為單調(diào)遞增函數(shù).當(dāng)
時,
.
(2)證明:函數(shù)在區(qū)間
為單調(diào)遞減函數(shù).
(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時
為何值?(直接回答結(jié)果,不需證明).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com