題目列表(包括答案和解析)
已知函數
(Ⅰ)求函數的最小正周期;
(Ⅱ)求函數在區(qū)間
上的最大值和最小值.
【解析】(1)
所以,
的最小正周期
(2)因為在區(qū)間
上是增函數,在區(qū)間
上是減函數,
又,
,
,
故函數在區(qū)間
上的最大值為
,最小值為-1.
已知函數.(
)
(1)若在區(qū)間
上單調遞增,求實數
的取值范圍;
(2)若在區(qū)間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調遞增,則
在區(qū)間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區(qū)間
上,函數
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調遞增,
則在區(qū)間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區(qū)間上,函數
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數,并且在該區(qū)間上有
,不合題意;
當,即
時,同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數;
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
已知函數,
(1)設常數,若
在區(qū)間
上是增函數,求
的取值范圍;
(2)設集合,
,若
,求
的取值范圍.
【解析】本試題主要考查了三角函數的性質的運用以及集合關系的運用。
第一問中利用
利用函數的單調性得到,參數的取值范圍。
第二問中,由于解得參數m的取值范圍。
(1)由已知
又因為常數,若
在區(qū)間
上是增函數故參數
(2)因為集合,
,若
A、1個 | B、2個 | C、3個 | D、4個 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com