題目列表(包括答案和解析)
(14分)已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對于函數(shù)與
定義域上的任意實數(shù)
,若存在常數(shù)
,使得
和
都成立,則稱直線
為函數(shù)
與
的“分界線”.設(shè)函數(shù)
,
,
與
是否存在“分界線”?若存在,求出
的值;若不存在,請說明理由.
(14分)已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對于函數(shù)與
定義域上的任意實數(shù)
,若存在常數(shù)
,使得
和
都成立,則稱直線
為函數(shù)
與
的“分界線”.設(shè)函數(shù)
,
,
與
是否存在“分界線”?若存在,求出
的值;若不存在,請說明理由.
(本小題共14分)已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對任意
,①方程
有實數(shù)根;②函數(shù)
的導數(shù)
滿足
.
(Ⅰ)判斷函數(shù)是否是集合
中的元素,并說明理由;
(Ⅱ)集合中的元素
具有下面的性質(zhì):若
的定義域為
,則對于任意
,都存在
,使得等式
成立.試用這一性質(zhì)證明:方程
有且只有一個實數(shù)根;
(Ⅲ)對任意,且
,求證:對于
定義域中任意的
,
,
,當
,且
時,
.
(本小題共14分)已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對任意
,①方程
有實數(shù)根;②函數(shù)
的導數(shù)
滿足
.
(Ⅰ)判斷函數(shù)是否是集合
中的元素,并說明理由;
(Ⅱ)集合中的元素
具有下面的性質(zhì):若
的定義域為
,則對于任意
,都存在
,使得等式
成立.試用這一性質(zhì)證明:方程
有且只有一個實數(shù)根;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com