題目列表(包括答案和解析)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當(dāng)x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當(dāng)時,取
,有
,故
時不合題意.當(dāng)
時,令
,即
令,得
①當(dāng)時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)時,
,對于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.
當(dāng)時,
在(2)中取,得
,
從而
所以有
綜上,,
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得
…………12分
.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)
時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是
或
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結(jié)論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當(dāng),即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當(dāng),即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當(dāng)時,
;
當(dāng)時,
設(shè)函數(shù).
(Ⅰ) 當(dāng)時,求
的單調(diào)區(qū)間;
(Ⅱ) 若在
上的最大值為
,求
的值.
【解析】第一問中利用函數(shù)的定義域為(0,2),
.
當(dāng)a=1時,所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
第二問中,利用當(dāng)時,
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域為(0,2),
.
(1)當(dāng)時,
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
(2)當(dāng)時,
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com