題目列表(包括答案和解析)
已知函數(shù),
.
(Ⅰ)若函數(shù)依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù),使對(duì)任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設(shè),則.
設(shè),則
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有
.
故在區(qū)間
上是減函數(shù)。又
故存在,使得
.
當(dāng)時(shí),有
,當(dāng)
時(shí),有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當(dāng)時(shí),恒有
;當(dāng)
時(shí),恒有
;
故使命題成立的正整數(shù)m的最大值為5
已知函數(shù)的圖像上兩相鄰最高點(diǎn)的坐標(biāo)分別為
和
.(Ⅰ)求
與
的值;(Ⅱ)在
中,
分別是角
的對(duì)邊,且
求
的取值范圍.
【解析】本試題主要考查了三角函數(shù)的圖像與性質(zhì)的綜合運(yùn)用。
第一問中,利用所以由題意知:
,
;第二問中,
,即
,又
,
則,解得
,
所以
結(jié)合正弦定理和三角函數(shù)值域得到。
解:(Ⅰ),
所以由題意知:,
;
(Ⅱ),即
,又
,
則,解得
,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224545151178994_ST.files/image021.png">,所以,所以
已知函數(shù),
(1)設(shè)常數(shù),若
在區(qū)間
上是增函數(shù),求
的取值范圍;
(2)設(shè)集合,
,若
,求
的取值范圍.
【解析】本試題主要考查了三角函數(shù)的性質(zhì)的運(yùn)用以及集合關(guān)系的運(yùn)用。
第一問中利用
利用函數(shù)的單調(diào)性得到,參數(shù)的取值范圍。
第二問中,由于解得參數(shù)m的取值范圍。
(1)由已知
又因?yàn)槌?shù),若
在區(qū)間
上是增函數(shù)故參數(shù)
(2)因?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911521242131321/SYS201207091152574838608756_ST.files/image006.png">,,若
已知函數(shù);
(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍。
(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使
成立,求實(shí)數(shù)
的取值范圍。
【解析】第一問中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以
內(nèi)滿足
恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個(gè)x的值使
成立,等價(jià)于不等式
在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。
解:(1),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以 內(nèi)滿足
恒成立,即
恒成立,
亦即,
即可 又
當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),
在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是
.
(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式
在[1,e]上有解,設(shè)
上的增函數(shù),
依題意需
實(shí)數(shù)k的取值范圍是
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得
…………12分
.綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)
時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是
或
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com