題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為
,求數(shù)列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,不等式
恒成立,求實數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時,
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D
D
A
B
D
B
C
B
C
D
B
1.提示:所以
,故選C。
2.提示:命題P:,所以命題P是假命題,
命題Q
當(dāng)時,。
,所以以命題Q是真命題,故選D。故選A。
3.提示:又
,所以
,故選D。
4.提示:在AB上取點D,使得,則點P只能在AD內(nèi)運動,則
,
5.提示:故選B。
6.提示:由圖(1)改為圖(2)后每次循環(huán)時的值都為1,因此運行過程出現(xiàn)無限循環(huán),故選D
7.提示:設(shè)全班40個人的總分為S,
則,故選B。
8.提示:
所以約束條件為表示的平面區(qū)域是以點O(0,0),
,N(0,1),Q(2,3)為頂點的平行四邊形(包括邊界),故當(dāng)
時,
的最大值是4,故選C。
9.提示:由
及
得
如圖
過A作于M,則
得
.
故選B.
10.提示:不妨設(shè)點(2,0)與曲線上不同的三的點距離為分別
,它們組成的等比數(shù)列的公比為
若令
,顯然
,又
所以
,
不能取到
。故選B。
11.提示:使用特值法:取集合當(dāng)
可以排除A、B;
取集合,當(dāng)
可以排除C;故選D;
12.提示:n棱柱有個頂點,被平面截去一個三棱錐后,可以分以下6種情形(圖1~6)
在圖4,圖6所示的情形,還剩個頂點;
在圖5的情形,還剩個頂點;
在圖2,圖3的情形,還剩個頂點;
在圖1的情形,還剩下個頂點.故選B.
二、填空題:
13.
提示:由
14.
提示:斜率 ,切點
,所以切線方程為:
15.
提示:當(dāng)時,不等式無解,當(dāng)
時,不等式變?yōu)?sub>
,
由題意得或
,所以,
或
16.
三、解答題:
17.解:① ∵∴
的定義域為R;
② ∵,
∴為偶函數(shù);
③ ∵, ∴
是周期為
的周期函數(shù);
④ 當(dāng)時,
=
,
∴當(dāng)時
單調(diào)遞減;當(dāng)
時,
=
,
單調(diào)遞增;又∵
是周期為
的偶函數(shù),∴
在
上單調(diào)遞增,在
上單調(diào)遞減(
);
⑤ ∵當(dāng)時
;
當(dāng)時
.∴
的值域為
;
⑥由以上性質(zhì)可得:在
上的圖象如圖所示:
18.解:(Ⅰ)取PC的中點G,連結(jié)EG,GD,則
由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。
所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,
所以DG⊥PC,
|