題目列表(包括答案和解析)
如圖,是△
的重心,
、
分別是邊
、
上的動(dòng)點(diǎn),且
、
、
三點(diǎn)共線.
(1)設(shè),將
用
、
、
表示;
(2)設(shè),
,證明:
是定值;
(3)記△與△
的面積分別為
、
.求
的取值范圍.
(提示:
【解析】第一問中利用(1)
第二問中,由(1),得;①
另一方面,∵是△
的重心,
∴
而、
不共線,∴由①、②,得
第三問中,
由點(diǎn)、
的定義知
,
,
且時(shí),
;
時(shí),
.此時(shí),均有
.
時(shí),
.此時(shí),均有
.
以下證明:,結(jié)合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△
的重心,
∴. ②
而、
不共線,∴由①、②,得
解之,得,∴
(定值).
(3).
由點(diǎn)、
的定義知
,
,
且時(shí),
;
時(shí),
.此時(shí),均有
.
時(shí),
.此時(shí),均有
.
以下證明:.(法一)由(2)知
,
∵,∴
.
∵,∴
.
∴的取值范圍
設(shè)橢圓的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣
.
直線PQ為:y=(x+c),兩條漸近線為:y=
x.由
,得:Q(
,
);由
,得:P(
,
).∴直線MN為:y-
=﹣
(x-
),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
.
【答案】B
k |
x+a |
x+b |
x+c |
1 |
3 |
1 |
2 |
kx |
ax+1 |
bx+1 |
cx+1 |
(c×2-bx+a) |
x2 |
1 |
x |
b |
x |
1 |
x |
1 |
x |
1 |
2 |
1 |
2 |
b |
(x+a) |
(x+c) |
(x+d) |
bx |
(ax-1) |
(cx-1) |
(dx-1) |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com