題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn)
.
(1)求函數(shù)的解析式(2)求函數(shù)
在區(qū)間
上的最大值和最小值
(本小題滿(mǎn)分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(本小題滿(mǎn)分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿(mǎn)分12分)已知是橢圓
的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,且
,圓O是以
為直徑的圓,直線(xiàn)
與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
考 生 填 寫(xiě) 座 位
號(hào) 碼 的 末 兩 位
題 號(hào)
一
二
三
四
17
18
19
20
21
22
23
得 分
一.選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的;每小題選出答案后,請(qǐng)用2B鉛筆把機(jī)讀卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
C
B
C
A
B
A
C
D
D
C
D
得分
評(píng)卷人
二.填空題(請(qǐng)把答案填在對(duì)應(yīng)題號(hào)的橫線(xiàn)上)
13.. 14.
.
15.. 16.
(或
) .
三.解答題(本大題共5小題,共64分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.請(qǐng)將答題的過(guò)程寫(xiě)在答題卷中指定的位置.)
17.( 本題滿(mǎn)分12分)
解:(Ⅰ)由遞推關(guān)系(2分)得,
(3分);
;
(6分),
(Ⅱ)由,即
(7分),所以
;.........12分(不單列
扣1分)
18.(本題滿(mǎn)分12分)
證明:(Ⅰ) 在三棱柱
中,
∵側(cè)棱垂直底面,
∴ 四邊形,
,
都是矩形,
又 ∵ ,
,
,
∴ ,又 ∵
為
中點(diǎn),
在中,
,同理,
.
∴ ,∴
,.....4分
在中,
,
在中,
,
∴ ,∴
.....6分
又 ,
∴
...........8分
(Ⅱ)由(Ⅰ)知,
∴ 直線(xiàn)與平面
所成的角為
...........9分
在中,
∴ ,...............11分
即 直線(xiàn)與平面
所成的角的余弦值為
........12分
解法二:(Ⅰ)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,設(shè)
,
,
,
(3分),則
,
,
,
∴
,
∴,∴
(5分),
∴ ,
∴ ,∴
(7分)
又 ,∴
.....8分
(Ⅱ)設(shè)向量與
的夾角為
,
∵,
∴....10分
設(shè)直線(xiàn)與平面
所成的角為
∵平面
∴
∴直線(xiàn)與平面
所成角的余弦值為
.…………………………12分
19.(本題滿(mǎn)分12分)
解:(Ⅰ)每個(gè)提升站需要緊急維修的概率為(2分),不需要緊急維修的概率為
(3分),設(shè)需要維修的提升站數(shù)為
,則
.
, (4分)
, (5分)
, (6分)
.(7分)
(Ⅱ)∵,∴
的取值是
,則
(元)的分布列是:
..................(9分)
∵,∴
,又
,
∴ .
(或)
答:緊急維修費(fèi)用的數(shù)學(xué)期望是750元...........12分
20.(本題滿(mǎn)分14分)
解: (Ⅰ)設(shè)“封閉函數(shù) ” 的“封閉區(qū)間”為
,其中
.
在
上為減函數(shù),故有:
,
解得:,
,
∴ 的“封閉區(qū)間”為
..........4分
(Ⅱ),令
,得:
....6分
∴ 在(
,0)上是增函數(shù),在(2 ,+
)上也是增函數(shù);在(0 ,2)上是減函數(shù).
顯然在
上不是單調(diào)函數(shù),故
不是
上的“封閉函數(shù) ”....8分
(Ⅲ)假設(shè)存在實(shí)數(shù),使函數(shù)
是
上的“封閉函數(shù) ”且“封閉區(qū)間”是
,則
(1) 函數(shù)在
上是單調(diào)函數(shù).
,若函數(shù)
在
上是增函數(shù),則
對(duì)
恒成立,則:
;解得:
....10分
(2) 由,知
,故函數(shù)
在
上是增函數(shù),所以, 函數(shù)
在區(qū)間
上是增函數(shù),故有:
,∵
,∴
,從而方程
至少有兩個(gè)不相等的實(shí)數(shù)根.
又方程有一根為
,故:方程
至少有一個(gè)不為
的根.
∴,解得:
且
0..........13分
由(1),(2)知:3...........14分
21.(本題滿(mǎn)分14分)
解:(Ⅰ)∵離心率
,且短半軸長(zhǎng)
,
∴ ,∴
,
∴ 橢圓的方程為
..............5分
(Ⅱ)設(shè),則
,
,則
(6分),則直線(xiàn)
的方程為
,聯(lián)立
,得
(8分),
(或?qū)懗桑?sub>(8分),
(或,即
(8分)
∵ ,∴
)
解之:,
(10分),
∴ (11分),
(或,
(11分),)
又 ∵、
、
三點(diǎn)共線(xiàn),∴
(12分),而
,
∴ ,..............13分
(或(13分),解之:
......14分)
∵ ,∴
,解之:
.........14分.
四.選考題(從下列三道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿(mǎn)分10分; 請(qǐng)將答題的過(guò)程寫(xiě)在答題卷中指定的位置)
你選做_______題(請(qǐng)?jiān)跈M線(xiàn)上注明題號(hào))
解(或證明):
22.證明:∵是
的切線(xiàn),直線(xiàn)
是
的割線(xiàn)
∴ ,(2分)
又 ∵ ,∴
,∴
(5分),
∵ ,
∴ △與△
兩邊對(duì)應(yīng)成比例,且?jiàn)A角相等(7分),
∴ △∽△
(8分)
∴ (10分).
23.解:(Ⅰ)直線(xiàn)的參數(shù)方程是
,即
..5分
(Ⅱ)設(shè)
,則
,
∵,
(7分),
∴ ,即圓
的極坐標(biāo)方程為
..........10分
24.解:由 得
,∴不等式的解集為
(4分)
∵
∴當(dāng)≤1時(shí),
為空集,顯然成立,......6分
當(dāng)>1時(shí),
=
......8分
由 得
或
或
,即
,
這與>1矛盾,
綜合上述得:≤1........10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com