題目列表(包括答案和解析)
請先閱讀:
設(shè)平面向量=(a1,a2),
=(b1,b2),且
與
的夾角為è,
因?yàn)?sub>
=|
||
|cosè,
所以
≤|
||
|.
即,
當(dāng)且僅當(dāng)è=0時,等號成立.
(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.
已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點(diǎn),求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)的圖象經(jīng)過P(3,4)點(diǎn),所以
,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以
.
(2)問中,對底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由知,
.,指對數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)的圖象經(jīng)過
∴
,即
. … 2分
又,所以
.
………… 4分
⑵當(dāng)時,
;
當(dāng)時,
. ……………… 6分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,
當(dāng)時,
在
上為增函數(shù),∵
,∴
.
即.當(dāng)
時,
在
上為減函數(shù),
∵,∴
.即
. …………………… 8分
⑶由知,
.所以,
(或
).
∴.∴
, … 10分
∴ 或
,所以,
或
.
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 2 1 |
a | 2 2 |
a | 2 3 |
b | 2 1 |
b | 2 2 |
b | 2 3 |
x |
2x-2 |
8-3x |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 21 |
a | 22 |
a | 23 |
b | 21 |
b | 22 |
b | 23 |
x |
2x-2 |
8-3x |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com