題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為
,求數(shù)列
的前
項(xiàng)和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對(duì)任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)
在
軸上,點(diǎn)
在
軸的正半軸,點(diǎn)
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在
軸上移動(dòng)時(shí),求動(dòng)點(diǎn)
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時(shí),
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說(shuō)明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項(xiàng)和為
,對(duì)任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對(duì)任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項(xiàng)和為
。已知正實(shí)數(shù)
滿足:對(duì)任意正整數(shù)
恒成立,求
的最小值。
一、選擇題(每題5分共50分)
1.D 2.A 3.B 4.C 5.C
6.C 7.B 8.C 9.C 10.D
二、填空題(每題5分共20分)
11. 12.
13.
14.(0,2), 15.3
三、解答題(共80分)
16.解:(Ⅰ)由已知得:,
又是△ABC的內(nèi)角,所以
.
(2)由正弦定理:,
又因?yàn)?sub>,
,又
是△ABC的內(nèi)角,所以
.
17.證明:連結(jié)AB,A1D,在正方形中,A1B=A1D,O是BD中點(diǎn),
∴A1O⊥BD;
連結(jié)OM,Aa=MC1
OA=OC=a,AC=
a,
∴A1O2=Aa2=
a2,OM2=OC2+MC2=
a2,A
a2=
a2,∴A
∴A1O⊥OM,
∴AO1⊥平面MBD
18解:(Ⅰ),
因?yàn)楹瘮?shù)在
及
取得極值,則有
,
.
即
解得,
.
(Ⅱ)由(Ⅰ)可知,,
.
當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
.
所以,當(dāng)時(shí),
取得極大值
,又
,
.
則當(dāng)時(shí),
的最大值為
.
因?yàn)閷?duì)于任意的,有
恒成立,
所以 ,
解得 或
,
因此的取值范圍為
.
19.解(Ⅰ)由題意知,
當(dāng)n≥2時(shí),,
,
兩式相減得
整理得:
∴數(shù)列{}是以2為首項(xiàng),2為公比的等比數(shù)列。
∴
(Ⅱ)由(Ⅰ)知,∴bn=n
, …………①
, …………②
①-②得
,
∴,
∴,
20.解:設(shè)這臺(tái)機(jī)器最佳使用年限是n年,則n年的保養(yǎng)、維修、更換易損零件的總費(fèi)用為:
,
等號(hào)當(dāng)且僅當(dāng)
答:這臺(tái)機(jī)器最佳使用年限是12年,年平均費(fèi)用的最小值為1.55萬(wàn)元.
21.⑴c=2, a=3 雙曲線的方程為
⑵ 得 (1?3k2)x2?6kx?9=0
x1+x2= , x1x2=
由△>0 得 k2<1
由= x1x2+y1y2=(1+k2) x1x2+k(x1+x2)+2>2得 <k2<3
所以,<k2<1
即k∈(?1, )∪( , 1 )
附加題
(1)證明:先將變形:
,
當(dāng),即
時(shí),∴
恒成立,
故的定義域?yàn)?sub>
。
反之,若對(duì)所有實(shí)數(shù)
都有意義,則只須
。
令,即
,解得
,故
。
(2)解析:設(shè),
∵是增函數(shù),
∴當(dāng)最小時(shí),
最小。
而,
顯然,當(dāng)時(shí),
取最小值為
,
此時(shí)為最小值。
(3)證明:當(dāng)時(shí),
,
當(dāng)且僅當(dāng)m=2時(shí)等號(hào)成立。
∴。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com