8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

3.運用正弦定理.余弦定理.三角形面積公式及關系式.解決三角形中的計算和證明問題. 查看更多

 

題目列表(包括答案和解析)

△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。

【解析】本試題主要考查了解三角形的運用,

因為

【點評】該試題從整體來看保持了往年的解題風格,依然是通過邊角的轉換,結合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運算得到A。

 

查看答案和解析>>

已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC、AD的中點.

(1)求證:DE∥平面PFB;

(2)已知二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.

【解析】(1)證:DE//BF即可;

(2)可以利用向量法根據(jù)二面角P-BF-C的余弦值為,確定高PD的值,即可求出四棱錐的體積.也可利用傳統(tǒng)方法直接作出二面角的平面角,求高PD的值也可.在找平面角時,要考慮運用三垂線或逆定理.

 

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>


同步練習冊答案