題目列表(包括答案和解析)
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),
恒成立;
(3)任取兩個(gè)不相等的正數(shù),且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當(dāng)k0時(shí),
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時(shí),>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-(x
1)
=
=
0,當(dāng)且僅當(dāng)x=1時(shí),
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當(dāng)x
1時(shí), 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
已知函數(shù),其中
.
(1)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)在
上的最大值.
【解析】(1)先求出x=2的導(dǎo)數(shù)也就是點(diǎn)(2,f(2))處切線的斜率,然后再利用點(diǎn)斜式寫出切線方程化成一般式即可.
(2)求導(dǎo),然后列表研究極值,最值.要注意參數(shù)的取值范圍.
已知函數(shù),
,其中
.
(1)若是函數(shù)
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)若對(duì)任意的(
為自然對(duì)數(shù)的底數(shù))都有
≥
成立,求實(shí)數(shù)
的取值范圍.
【解析】(1)根據(jù)建立關(guān)于a的方程求a即可.
(2)本題要分別求出f(x)在[1,e]上的最小值,g(x)在[1,e]上的最大值,然后
,解關(guān)于a的不等式即可.
如圖1,在中,
,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn),將
沿DE折起到
的位置,使
,如圖2.
(Ⅰ)求證:DE∥平面
(Ⅱ)求證:
(Ⅲ)線段上是否存在點(diǎn)Q,使
?說明理由。
【解析】(1)∵DE∥BC,由線面平行的判定定理得出
(2)可以先證,得出
,∵
∴
∴
(3)Q為的中點(diǎn),由上問
,易知
,取
中點(diǎn)P,連接DP和QP,不難證出
,
∴
∴
,又∵
∴
已知的展開式中第3項(xiàng)的系數(shù)與第5項(xiàng)的系數(shù)之比為
.
(1)求的值;(2)求展開式中的常數(shù)項(xiàng).
【解析】(1)利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),求出展開式中第3項(xiàng)與第5項(xiàng)的系數(shù)列出方程求出n的值.
(2)將求出n的值代入通項(xiàng),令x的指數(shù)為0求出r的值,將r的值代入通項(xiàng)求出展開式的常數(shù)項(xiàng).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com