8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(2)當x1≠x2時.設AB的直線方程為:y = kx + m.代入得(3 + 4k2)x2 + 8mkx + 4m2 ? 12 = 0 查看更多

 

題目列表(包括答案和解析)

若x1、x2是關于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關系:x1+x2=-,x1•x2.把它稱為一元二次方程根與系數(shù)關系定理.如果設二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關系定理可以得到A、B連個交點間的距離為:

AB=|x1-x2|=

參考以上定理和結論,解答下列問題:

設二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.

(1)當△ABC為直角三角形時,求b2-4ac的值;

(2)當△ABC為等邊三角形時,求b2-4ac的值.

 

查看答案和解析>>

若x1、x2是關于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關系:x1+x2=-,x1•x2.把它稱為一元二次方程根與系數(shù)關系定理.如果設二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關系定理可以得到A、B連個交點間的距離為:
AB=|x1-x2|=

參考以上定理和結論,解答下列問題:
設二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,求b2-4ac的值.

查看答案和解析>>

在平面直角坐標系xOy上,給定拋物線L:y=x2,實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過點A(p0p0)(p0≠0)作L的切線教y軸于點B。證明:對線段AB上任一點Q(p,q)有φ(p,q)=
(2)設M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0。過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1,p12),E′(p2,p22),l1,l2與y軸分別交與F,F(xiàn)'。線段EF上異于兩端點的點集記為X。證明:M(a,b)∈X|P1|>|P2|φ(a,b)=
(3)設D={(x,y)|y≤x-1,y≥(x+1)2-},當點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax)。

查看答案和解析>>

(本小題滿分14分)

       在平面直角坐標系xOy上,給定拋物線L:實數(shù)p,q滿足,x1,x2是方程的兩根,記。

(1)過點作L的切線教y軸于點       B.證明:對線段AB上任一點Q(p,q)有

(2)設M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線,切點分別為,與y軸分別交與F,F'。線段EF上異于兩端點的點集記為X.證明:M(a,b) X;

(3)設D={ (x,y)|y≤x-1,y≥(x+1)2-}.當點(p,q)取遍D時,求的最小值 (記為)和最大值(記為).

查看答案和解析>>

已知點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個動點,O是坐標原點,且OA⊥OB,設圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明:圓C是以線段AB為直徑的圓;
(2)當圓心C到直線x-2y=0的距離的最小值為
5
時,求P的值.

查看答案和解析>>


同步練習冊答案