題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設平面PCD的法向量
,
則,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設點E的坐標為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
已知函數(shù);
(1)若函數(shù)在其定義域內(nèi)為單調遞增函數(shù),求實數(shù)
的取值范圍。
(2)若函數(shù),若在[1,e]上至少存在一個x的值使
成立,求實數(shù)
的取值范圍。
【解析】第一問中,利用導數(shù),因為
在其定義域內(nèi)的單調遞增函數(shù),所以
內(nèi)滿足
恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉換為不等式有解來解答即可。
解:(1),
因為在其定義域內(nèi)的單調遞增函數(shù),
所以 內(nèi)滿足
恒成立,即
恒成立,
亦即,
即可 又
當且僅當,即x=1時取等號,
在其定義域內(nèi)為單調增函數(shù)的實數(shù)k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使成立,等價于不等式
在[1,e]上有解,設
上的增函數(shù),
依題意需
實數(shù)k的取值范圍是
|
已知,函數(shù)
(1)當時,求函數(shù)
在點(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使
>g(xo)成立,求正實數(shù)
的取值范圍。
【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當
時,
又
所以函數(shù)
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時,
又
∴ 函數(shù)在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實數(shù)的取值范圍是(
,
)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com