題目列表(包括答案和解析)
設橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結合
得到結論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
函數(shù),方程
的兩個根分別為1和4.
(Ⅰ)當 a=3且曲線過原點時,求
的解析式。
(Ⅱ)若在
無極值點,求a的取值范圍.
(14分)
已知函數(shù)(
),且方程
有兩個實數(shù)根為
;
(1)求函數(shù)的解析式。
(2)當時,若
恒成立,求
的取值范圍。
(3)設,解關于
的不等式:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com