題目列表(包括答案和解析)
已知R,函數(shù)
.
⑴若函數(shù)沒有零點,求實數(shù)
的取值范圍;
⑵若函數(shù)存在極大值,并記為
,求
的表達式;
⑶當時,求證:
.
【解析】(1)求導研究函數(shù)f(x)的最值,說明函數(shù)f(x)的最大值<0,或f(x)的最小值>0.
(2)根據(jù)第(1)問的求解過程,直接得到g(m).
(3)構造函數(shù),證明
即可,然后利用導數(shù)求g(x)的最小值.
已知函數(shù)(
為實數(shù)).
(Ⅰ)當時,求
的最小值;
(Ⅱ)若在
上是單調函數(shù),求
的取值范圍.
【解析】第一問中由題意可知:. ∵
∴
∴
.
當時,
;
當
時,
. 故
.
第二問.
當時,
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.轉化后解決最值即可。
解:(Ⅰ) 由題意可知:. ∵
∴
∴
.
當時,
;
當
時,
. 故
.
(Ⅱ) .
當時,
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.∵二次函數(shù)
的對稱軸為
,且
∴或
或
或
或
. 綜上
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有
,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區(qū)間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數(shù)m的取值范圍是
或
已知函數(shù)其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當時,
,
.結合表格和導數(shù)的知識判定單調性和極值,進而得到最值。
第二問中,∵,
,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,
,
.
當在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時,
,
.
(Ⅱ)∵,
,
∴原不等式等價于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價于
對
恒成立,
∵對于任意的時,
(當且僅當
時取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
已知拋物線,過M(a,0)且斜率為1的直線
與拋物線交于不同的兩點A、B,
。
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值。
分析:這是一道直線與圓錐曲線位置關系的問題,對于(1),可以設法得到關于a的不等式,通過解不等式求出a的范圍,即“求范圍,找不等式”;蛘邔表示為另一個變量的函數(shù),利用求函數(shù)的值域求出a的范圍。對于(2)首先要把△NAB的面積表示為一個變量的函數(shù),然后再求它的最大值。
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com