題目列表(包括答案和解析)
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
給出問題:已知滿足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為
.由正弦定理可得,原式等價(jià)于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果. .
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說明理由.
【解析】第一問中取,則
;
…………1分
對等式兩邊求導(dǎo),得
取,則
得到結(jié)論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
猜想:當(dāng)時(shí),
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則
;
…………1分
對等式兩邊求導(dǎo),得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
…………6分
猜想:當(dāng)時(shí),
,下面用數(shù)學(xué)歸納法證明:
由上述過程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即
,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),
成立。
…………11分
綜上得,當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
((本小題共13分)
若數(shù)列滿足
,數(shù)列
為
數(shù)列,記
=
.
(Ⅰ)寫出一個(gè)滿足,且
〉0的
數(shù)列
;
(Ⅱ)若,n=2000,證明:E數(shù)列
是遞增數(shù)列的充要條件是
=2011;
(Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列,使得
=0?如果存在,寫出一個(gè)滿足條件的E數(shù)列
;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。
(答案不唯一,0,1,0,1,0也是一個(gè)滿足條件的E的數(shù)列A5)
(Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,所以.所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因?yàn)閍1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數(shù)列.綜上,結(jié)論得證。
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),
恒成立;
(3)任取兩個(gè)不相等的正數(shù),且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當(dāng)k0時(shí),
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時(shí),>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-(x
1)
=
=
0,當(dāng)且僅當(dāng)x=1時(shí),
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當(dāng)x
1時(shí), 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com