8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(3)證明:. 查看更多

 

題目列表(包括答案和解析)

(2013•眉山一模)已知函數(shù)f(x)=lnx-kx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明:
n
i=2
lni
i+1
n(n-1)
4
(n∈N+,n>1).

查看答案和解析>>

已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且側(cè)棱垂直于底面,由B沿棱柱側(cè)面經(jīng)過(guò)棱C C1到點(diǎn)A1的最短路線(xiàn)長(zhǎng)為2
5
,設(shè)這條最短路線(xiàn)與CC1的交點(diǎn)為D.
(1)求三棱柱ABC-A1B1C1的體積;
(2)在平面A1BD內(nèi)是否存在過(guò)點(diǎn)D的直線(xiàn)與平面ABC平行?證明你的判斷;
(3)證明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=1
(1)求f(x),g(x)的解析式. 
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)的奇偶性.
(3)證明函數(shù)S(x)=xf(x)+g(
12
)在(0,+∞)
上是增函數(shù).

查看答案和解析>>

已知函數(shù)f(x)=x3-x2+
x
2
+
1
4
,且存在x0∈(0,
1
2
),使f(x0)=x0
(1)證明:f(x)是R上的單調(diào)增函數(shù);
(2)設(shè)x1=0,xn+1=f(xn);y1=
1
2
,yn+1=f(yn),其中n=1,2,…,證明:xn<xn+1<x0<yn+1<yn;
(3)證明:
yn+1-xn+1
yn-xn
1
2

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項(xiàng)公式。

三、

17.解:(1)依題意得:

得:,

所以:,即,………………………………4分

<sub id="bewrs"></sub>
      • 20090508

        (2)設(shè),則,

            由正弦定理:,

               所以?xún)蓚(gè)正三角形的面積和,…………8分

                      ……………10分

               ,,

               所以:……………………………………12分

        18.解:(1);………………………4分

               (2)消費(fèi)總額為1500元的概率是:………………………5分

        消費(fèi)總額為1400元的概率是:………6分

        消費(fèi)總額為1300元的概率是:

        ,

        所以消費(fèi)總額大于或等于1300元的概率是;……………………8分

        (3),

        ,

        所以的分布列為:

        0

        1

        2

        3

         

        0.294

        0.448

        0.222

        0.036

        ………………………………………………11分

               數(shù)學(xué)期望是:。…………12分

        19.(1)證明:因?yàn)?sub>,所以平面,

        又因?yàn)?sub>平面,

        平面平面;…………………4分

        (2)因?yàn)?sub>,所以平面,

        所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

        過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,

        所以平面,

        所以的長(zhǎng)為所求,………………………………………………………6分

        因?yàn)?sub>,所以為二面角的平面角,,=1,

        點(diǎn)到平面的距離等于1;…………………………8分

               (3)連接,由平面,,得到

               所以是二面角的平面角,

               ,…………………………………………………11分

               又因?yàn)槠矫?sub>平面,二面角的大小是!12分

        20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

               ,

               解得,所以,…………………3分

               所以,

              

               所以;…………………………………………………………………6分

               (2),因?yàn)?sub>,

               所以數(shù)列是遞增數(shù)列,…8分

               當(dāng)且僅當(dāng)時(shí),取得最小值,則:,

               所以,即的取值范圍是。………………12分

        21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

        因?yàn)?sub>,所以,

        得到:,注意到不共線(xiàn),

        所以軌跡方程為;……………5分

        (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

        假設(shè)滿(mǎn)足條件的直線(xiàn)存在,設(shè)其方程為,直線(xiàn)被圓截得的弦為,

         

        ……………………………………………………7分

        弦長(zhǎng)為定值,則,即,

        此時(shí)……………………………………………………9分

        所以當(dāng)時(shí),存在直線(xiàn),截得的弦長(zhǎng)為,

           當(dāng)時(shí),不存在滿(mǎn)足條件的直線(xiàn)!12分

        22.解:(1)設(shè),因?yàn)?sub> 上的增函數(shù),且,所以上的增函數(shù),

        所以,得到;所以的取值范圍為………4分

        (2)由條件得到

        猜測(cè)最大整數(shù),……6分

        現(xiàn)在證明對(duì)任意恒成立,

        等價(jià)于,

        設(shè),

        當(dāng)時(shí),,當(dāng)時(shí),,

        所以對(duì)任意的都有,

        對(duì)任意恒成立,

        所以整數(shù)的最大值為2;……………………………………………………9分

        (3)由(2)得到不等式,

        所以,……………………11分

        所以原不等式成立!14分