8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(1)求數(shù)列.的通項公式, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的首項為1,前n項和為Sn,且滿足an+1=3Sn,n∈N*.數(shù)列{bn}滿足bn=log4an
(1)求數(shù)列{an}的通項公式;
(2)當n≥2時,試比較b1+b2+…+bn
1
2
(n-1)2
的大小,并說明理由;
(3)試判斷:當n∈N*時,向量
a
=(an,bn)是否可能恰為直線l:y=
1
2
x+1
的方向向量?請說明你的理由.

查看答案和解析>>

函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x),數(shù)列{an}和{bn}滿足:a1=
1
2
,an+1=f-1(an),函數(shù)y=f-1(x)的圖象在點(n,f-1(n))(n∈N*)處的切線在y軸上的截距為bn
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{
bn
a
2
n
-
λ
an
}
;的項中僅
b5
a
2
5
-
λ
a5
最小,求λ的取值范圍;
(3)令函數(shù)g(x)=[f-1(x)+f(x)]- 
1-x2
1+x2
,0<x<1.數(shù)列{xn}滿足:x1=
1
2
,0<xn<1且xn+1=g(xn),(其中n∈N*).證明:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8

查看答案和解析>>

已知數(shù)列{an}為等比數(shù)列,a2=6,a5=162.
(1)求數(shù)列{an}的通項公式;
(2)設Sn是數(shù)列{an}的前n項和,證明
SnSn+2
S
2
n+1
≤1

查看答案和解析>>

已知數(shù)列{an}和{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1,數(shù)列{bn}的前n和為Sn
(1)求數(shù)列{bn}的通項公式;
(2)設Tn=S2n-Sn,求證:Tn+1>Tn
(3)求證:對任意的n∈N*1+
n
2
S2n
1
2
+n
成立.

查看答案和解析>>

設數(shù)列{bn}的前n項和為Sn,且bn=2-2Sn;數(shù)列{an}為等差數(shù)列,且a5=14,a7=20.
(1)求數(shù)列{bn}的通項公式;
(2)若cn=an•bn,n=1,2,3,…,Tn為數(shù)列{cn}的前n項和.求證:Tn
72

查看答案和解析>>

 

一、CABCB   BDADD   AC

二、13.  0.1;14.;15. 36;16.存在,通項公式

三、

17.解:(1)依題意得:

得:

所以:,即,………………………………4分

<blockquote id="utczb"></blockquote>

        20090508

        (2)設,則,

            由正弦定理:,

               所以兩個正三角形的面積和,…………8分

                      ……………10分

               ,,

               所以:……………………………………12分

        18.解:(1);………………………4分

               (2)消費總額為1500元的概率是:………………………5分

        消費總額為1400元的概率是:………6分

        消費總額為1300元的概率是:

        ,

        所以消費總額大于或等于1300元的概率是;……………………8分

        (3)

        ,

        所以的分布列為:

        0

        1

        2

        3

         

        0.294

        0.448

        0.222

        0.036

        ………………………………………………11分

               數(shù)學期望是:!12分

        19.(1)證明:因為,所以平面,

        又因為,平面,

        平面平面;…………………4分

        (2)因為,所以平面

        所以點到平面的距離等于點E到平面的距離,

        過點E作EF垂直CD且交于點F,因為平面平面,

        所以平面,

        所以的長為所求,………………………………………………………6分

        因為,所以為二面角的平面角,=1,

        到平面的距離等于1;…………………………8分

               (3)連接,由平面,,得到

               所以是二面角的平面角,

               ,…………………………………………………11分

               又因為平面平面,二面角的大小是!12分

        20.解:(1)設等差數(shù)列的公差為,依題意得:

               ,

               解得,所以,…………………3分

               所以,

               ,

               所以;…………………………………………………………………6分

               (2),因為,

               所以數(shù)列是遞增數(shù)列,…8分

               當且僅當時,取得最小值,則:

               所以,即的取值范圍是!12分

        21.解:(1)設點的坐標為,則點的坐標為,點的坐標為

        因為,所以,

        得到:,注意到不共線,

        所以軌跡方程為;……………5分

        (2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為

        假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為,

         

        ……………………………………………………7分

        弦長為定值,則,即,

        此時……………………………………………………9分

        所以當時,存在直線,截得的弦長為

           當時,不存在滿足條件的直線。……………………………………………12分

        22.解:(1)設,因為 上的增函數(shù),且,所以上的增函數(shù),

        所以,得到;所以的取值范圍為………4分

        (2)由條件得到,

        猜測最大整數(shù),……6分

        現(xiàn)在證明對任意恒成立,

        等價于

        ,

        時,,當時,,

        所以對任意的都有,

        對任意恒成立,

        所以整數(shù)的最大值為2;……………………………………………………9分

        (3)由(2)得到不等式

        所以,……………………11分

        所以原不等式成立!14分