題目列表(包括答案和解析)
(09年湖北補習學校聯(lián)考文)以為首項的等差數(shù)列
,當且僅當
時,其前n項和最小,則公差d的取值范圍是 ( )
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數(shù)列中的
成等比數(shù)列
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
,
.數(shù)列
滿足
,
,
為數(shù)列
的前n項和.
(1)求數(shù)列的通項公式
和數(shù)列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,
為其前n項和,且滿足
。數(shù)列
滿足
,
為數(shù)列
的前n項和。
(I)求;d和
;
(II)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍。
已知函數(shù)其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當時,
,
.結合表格和導數(shù)的知識判定單調性和極值,進而得到最值。
第二問中,∵,
,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,
,
.
當在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時,
,
.
(Ⅱ)∵,
,
∴原不等式等價于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價于
對
恒成立,
∵對于任意的時,
(當且僅當
時取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
一、選擇題: B C A D B C A B D C
二、填空題:
11、 12、
13、
14、 15、②③
三、解答題:
16.解:(1) ……………………………1分
=
==
…………………………………………4分
∵θ∈[π,2π],∴,
∴≤1 則
max=2
. ………………………………………………6分
(2) 由已知,得
…………………………………8分
又 ∴
……………………10分
∵θ∈[π,2π]∴,∴
. …………………12分
17.解:依題意知:.……4分
(1)對于
且是奇函數(shù)……………………………………….……6分
(2) 當
時,
單調遞減,
當時,
單調遞增………………………………………….…8分
……….…………..…10分
又………….……12分
18.解:(1)當
………………2分
,..............................................5分
故 ................6分
定義域為 .................................7分
(2)對于,
顯然當(元), ..................................9分
∴當每輛自行車的日租金定在11元時,才能使一日的凈收入最多。..........12分
19.解:(1)由題意
…………………………2分
當
時,
取得極值,
所以
即
…………………4分
此時當時,
,當
時,
,
是函數(shù)
的最小值。
………………………6分
(2)設,則
,
……8分
設,
,令
解得
或
列表如下:
__
0
+
函數(shù)
在
和
上是增函數(shù),在
上是減函數(shù)。
當時,
有極大值
;當
時,
有極小值
……10分
函數(shù)
與
的圖象有兩個公共點,
函數(shù)
與
的圖象有兩個公共點
或
……12分
20.解:(1),
.令
,則
.…………2分
,
當
時,
,則
.
數(shù)列
不是等比數(shù)列.
當
時,數(shù)列
不是等比數(shù)列.………………… 5分
當時,
,則數(shù)列
是等比數(shù)列,且公比為2.
,即
.解得
.……7分
(2)由(Ⅰ)知,當時,
,
.
令, ………………………①
則, …………②
由①-②:
,
, ………………………………..………11分
則. …………………..………13分
21.解:(1)∵成等比數(shù)列 ∴
設
是橢圓上任意一點,依橢圓的定義得
即為所求的橢圓方程.
……………………5分
(2)假設存在,因
與直線
相交,不可能垂直
軸 …………………6分
因此可設的方程為:
由
① ……………………8分
方程①有兩個不等的實數(shù)根
∴、 ………10分
設兩個交點、
的坐標分別為
∴
∵線段恰被直線
平分 ∴
∵ ∴
③ 把③代入②得
∵ ∴
∴
解得
或
………13分
∴直線的傾斜角范圍為
…………………14分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com