8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

求證:, 查看更多

 

題目列表(包括答案和解析)

16、如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,E,F(xiàn),G分別是AA1,AC,BB1的中點(diǎn),且CG⊥C1G.
(Ⅰ)求證:CG∥平面BEF;
(Ⅱ)求證:平面BEF⊥平面A1C1G.

查看答案和解析>>

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請(qǐng)證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

精英家教網(wǎng)過拋物線x2=4y的焦點(diǎn)F作傾斜角為α的直線交拋物線于P、Q兩點(diǎn),過點(diǎn)P作拋物線的切線l交y軸于點(diǎn)T,過點(diǎn)P作切線l的垂線交y軸于點(diǎn)N.
(Ⅰ)求證:|NF|=|TF|=|PF|;
(Ⅱ)若cosα=
45
,求此拋物線與線段PQ所圍成的封閉圖形的面積.

查看答案和解析>>

已知數(shù)列an的前n項(xiàng)和Sn滿足條件2Sn=3(an-1),其中n∈N*
(1)求證:數(shù)列an成等比數(shù)列;
(2)設(shè)數(shù)列bn滿足bn=log3an.若 tn=
1bnbn+1
,求數(shù)列tn的前n項(xiàng)和.

查看答案和解析>>

精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),SB與平面ABCD所成的角為45°,且AD=2,SA=1.
(Ⅰ)求證:PD⊥平面SAP,
(Ⅱ)求二面角A-SD-P的大小的正切值.

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

當(dāng),即時(shí),取得最大值.

(Ⅱ)當(dāng),即時(shí),

所以函數(shù)的單調(diào)遞增區(qū)間是

17、解:(Ⅰ)從15名教師中隨機(jī)選出2名共種選法,   …………………………2分

所以這2人恰好是教不同版本的男教師的概率是.  …………………5分

(Ⅱ)由題意得

;  ;

的分布列為

0

1

2

 

 

所以,數(shù)學(xué)期望

18、解法一:(Ⅰ)證明:連接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

設(shè)。

所以,二面角的大小為。 ………………12分

19、(I)解:當(dāng)

  ①當(dāng), 方程化為

  ②當(dāng), 方程化為1+2x = 0, 解得,

  由①②得,

 (II)解:不妨設(shè),

 因?yàn)?sub>

  所以是單調(diào)遞函數(shù),    故上至多一個(gè)解,

 

20、解:(Ⅰ)由知,點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線右支,由,∴,故軌跡E的方程為…(3分)

(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l方程為,與雙曲線方程聯(lián)立消,設(shè)、,

<dfn id="4nnem"></dfn>
    • <tt id="4nnem"><th id="4nnem"></th></tt>
      1. (i)∵

        ……………………(7分)

            假設(shè)存在實(shí)數(shù),使得,

            故得對(duì)任意的恒成立,

            ∴,解得 ∴當(dāng)時(shí),.

            當(dāng)直線l的斜率不存在時(shí),由知結(jié)論也成立,

            綜上,存在,使得.

           (ii)∵,∴直線是雙曲線的右準(zhǔn)線,

            由雙曲線定義得:,,

            方法一:∴

            ∵,∴,∴

            注意到直線的斜率不存在時(shí),,綜上,

            方法二:設(shè)直線的傾斜角為,由于直線

        與雙曲線右支有二個(gè)交點(diǎn),∴,過

        ,垂足為,則,

              由,得故:

          21 解:(Ⅰ)

          當(dāng)時(shí),

          ,即是等比數(shù)列. ∴; 

          (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

           則有

          ,解得

          再將代入得成立, 所以.  

          (III)證明:由(Ⅱ)知,所以

          ,   由

          所以,   

          從而

          .                       

           

           

        1. <table id="4nnem"><legend id="4nnem"><legend id="4nnem"></legend></legend></table><em id="4nnem"></em>