題目列表(包括答案和解析)
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
2 |
A、①② | B、①③ | C、②④ | D、③④ |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
2 |
設(shè)m、n是不同的直線,、
、
是不同的平面,有以下四個(gè)命題:
①
若、
,則
② 若
,
,則
③
若、
,則
④ 若
,
,則
其中真命題的序號(hào)是 ( )
A.①④ B.②③ C.②④ D.①③
給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m在此基礎(chǔ)上給出下列關(guān)于函數(shù)
的四個(gè)命題:
① ②
③ ④
的定義域?yàn)镽,值域是
則其中真命題的序號(hào)是 ( )
A.①② B.①③ C.②④ D.③④
第Ⅱ卷
1、A 2,、B 3、 D 4,、B 5、 D 6、C 7、A 8、B 9、A 10、D
11、(,1] 12、-或1 13、6p 14、2 15、11
16解:解:(Ⅰ)
當(dāng),即
時(shí),
取得最大值
.
(Ⅱ)當(dāng),即
時(shí),
所以函數(shù)的單調(diào)遞增區(qū)間是
17、解:(Ⅰ)從15名教師中隨機(jī)選出2名共種選法, …………………………2分
所以這2人恰好是教不同版本的男教師的概率是. …………………5分
(Ⅱ)由題意得
;
;
.
故的分布列為
0
1
2
所以,數(shù)學(xué)期望.
18、解法一:(Ⅰ)證明:連接
∥
。 ……………………3分
∥平面
…………………………5分
(Ⅱ)解:在平面
―
―
……………………8分
設(shè)。
在
所以,二面角―
―
的大小為
。 ………………12分
19、(I)解:當(dāng)
①當(dāng), 方程化為
②當(dāng), 方程化為1+2x
= 0, 解得
,
由①②得,
(II)解:不妨設(shè),
因?yàn)?sub>
所以是單調(diào)遞函數(shù), 故
上至多一個(gè)解,
20、解:(Ⅰ)由知,點(diǎn)
的軌跡
是以
、
為焦點(diǎn)的雙曲線右支,由
,∴
,故軌跡E的方程為
…(3分)
(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l方程為,與雙曲線方程聯(lián)立消
得
,設(shè)
、
,
|