題目列表(包括答案和解析)
設橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結合
得到結論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
已知過點的動直線
與拋物線
相交于
兩點.當直線
的斜率是
時,
.
(1)求拋物線的方程;
(2)設線段的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B,C
,當直線
的斜率是
時,
的方程為
,即
(1’)
聯(lián)立 得
,
(3’)
由已知 ,
(4’)
由韋達定理可得G方程為
(5’)
(2)設:
,BC中點坐標為
(6’)
得
由
得
(8’)
BC中垂線為 (10’)
(11’)
已知:函數(shù)(
),
.
。1)若函數(shù)圖象上的點到直線
距離的最小值為
,求
的值;
。2)關于的不等式
的解集中的整數(shù)恰有3個,求實數(shù)
的取值范圍;
。3)對于函數(shù)與
定義域上的任意實數(shù)
,若存在常數(shù)
,使得不等式
和
都成立,則稱直線
為函數(shù)
與
的“分界線”。設
,
,試探究
與
是否存在“分界線”?若存在,求出“分界線”的方程;若不存
在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com