題目列表(包括答案和解析)
如圖是單位圓
上的點(diǎn),
分別是圓
與
軸的兩交點(diǎn),
為正三角形.
(1)若點(diǎn)坐標(biāo)為
,求
的值;
(2)若,四邊形
的周長(zhǎng)為
,試將
表示成
的函數(shù),并求出
的最大值.
【解析】第一問利用設(shè)
∵ A點(diǎn)坐標(biāo)為∴
,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴
,
∴ 當(dāng)時(shí),即
當(dāng)
時(shí) , y有最大值5. .
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)時(shí),求證:
;
(Ⅱ)若邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時(shí),存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
在中,滿足
,
是
邊上的一點(diǎn).
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
(2)當(dāng)時(shí),則
=
第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以
,
(1)當(dāng)時(shí),則
=
;-2分
(2)當(dāng)時(shí),則
=
;--2分
(Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時(shí),
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com