題目列表(包括答案和解析)
已知中心在原點,焦點在軸上的橢圓
的離心率為
,且經(jīng)過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線
與橢圓
相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
【解析】第一問利用設(shè)橢圓的方程為
,由題意得
解得
第二問若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點
,設(shè)
兩點的坐標分別為
,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為
,由題意得
解得,故橢圓
的方程為
.……………………4分
⑵若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因為直線與橢圓
相交于不同的兩點
,設(shè)
兩點的坐標分別為
,
所以
所以.
又,
因為,即
,
所以.
即.
所以,解得
.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
設(shè)橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設(shè)點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設(shè),由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設(shè)M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
設(shè)橢圓 :
(
)的一個頂點為
,
,
分別是橢圓的左、右焦點,離心率
,過橢圓右焦點
的直線
與橢圓
交于
,
兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即
又因為
,得到
,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結(jié)合
得到結(jié)論。
解:(1)橢圓的頂點為,即
,解得
,
橢圓的標準方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經(jīng)檢驗不合題意. --------5分
②當直線斜率存在時,設(shè)存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得
,所以m的取值范圍是
(2)當m=4時,曲線C的方程為,點A,B的坐標分別為
,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設(shè)點M,N的坐標分別為,則
直線BM的方程為,點G的坐標為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com