題目列表(包括答案和解析)
設(shè)、
是不同的直線,
、
、
是不同的平面,有以下四個(gè)命題:
(1); (2)
;
(3); (4)
,其中,假命題是( )
(A)(1)(2) (B) (2)(3) (C)(1)(3) (D)(2)(4)
設(shè)、
是不同的直線,
、
、
是不同的平面,以下四個(gè)命題為真命題的是
① 若 則
②若
,
,則
③ 若,則
④若
,則
A.①③ B.①②③ C.②③④ D.①④
設(shè)、
是不同的直線,
、
、
是不同的平面,有以下四個(gè)命題:
若
,
,則
若
,
,則
若
,
,則
若
,
,則
其中真命題的序號(hào)是
設(shè)、
是不同的直線,
、
、
是不同的平面,有以下四個(gè)命題:(1)
(2)
(3)
(4)
,其中正確的是
(A)(1)(2) (B)(1)(3) (C)(2)(3) (D)(2)(4)
設(shè)、
是不同的直線,
、
、
是不同的平面,有以下四個(gè)命題:
若
,
,則
若
,
,則
若
,
,則
若
,
,則
其中真命題的序號(hào)是
A、 B、
C、
D、
一、
1.C 2.C 3.C 4.D 5.C 6.B 7.C 8.A 9.D 10.C
11.B 12.B
【解析】
11.提示:設(shè)曲線在點(diǎn)
處切線傾斜角為
,則
,由
,得
,故
,所以
,故選B.
12.提示:整形結(jié)合.
二、
13. 14.
15.3 16.①③
三、
17.解:(1)
的單調(diào)遞增區(qū)間為
(2)
18.(1)設(shè)乙、丙各自回答對(duì)的概率分別是、
,根據(jù)題意得:
,解得
(2).
19.解:(1)的解集有且只有一個(gè)元素
或
又由得
當(dāng)時(shí),
;
當(dāng)時(shí),
(2) ①
②
由式①-或②得
.
20.解法一:
(1)設(shè)交
于點(diǎn)
平面
.
作于點(diǎn)
,連接
,則由三垂線定理知:
是二面角
的平面角.
由已知得,
,
∴二面角的大小的60°.
(2)當(dāng)是
中點(diǎn)時(shí),有
平面
.
證明:取的中點(diǎn)
,連接
、
,則
,
,故平面
即平面
.
又
平面
,
平面
.
解法二:由已知條件,以為原點(diǎn),以
、
、
為
軸、
軸、
軸建立空間直角坐標(biāo)系,則
(1),
,設(shè)平面
的一個(gè)法向量為
,
則取
設(shè)平面的一個(gè)法向量為
,則
取
.
二面角
的大小為60°.
(2)令,則
,
,
由已知,,要使
平面
,只需
,即
則有,得
當(dāng)
是
中點(diǎn)時(shí),有
平面
.
21.解:(1)① 當(dāng)直線垂直于
軸時(shí),則此時(shí)直線方程為
,
與圓的兩個(gè)交點(diǎn)坐標(biāo)為
和
,其距離為
,滿足題意.
② 若直線不垂直于
軸,設(shè)其方程
,即
設(shè)圓心到此直線的距離為,則
,得
,
此時(shí)所求直線方程為
綜上所述,所求直線為或
.
(2)設(shè)點(diǎn)的坐標(biāo)為
點(diǎn)坐標(biāo)為
,則
點(diǎn)坐標(biāo)是
即
又由已知,直線
軸,所以,
,
點(diǎn)的軌跡議程是
,
軌跡是焦點(diǎn)坐標(biāo)為,長軸為8的橢圓,并去掉
兩點(diǎn).
22.解:,
(1)由題意: 解得
.
(2)方程的叛別式
,
① 當(dāng),即
時(shí),
,
在
內(nèi)恒成立,此時(shí)
在
為增函數(shù);
② 當(dāng),即
或
時(shí),
要使在
內(nèi)為增函數(shù),只需在
內(nèi)有
即可,
設(shè),
由得
,所以
.
由①②可知,若在
內(nèi)為增函數(shù),則
的取值范圍是
.
www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com