8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

19. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

已知實數(shù),曲線與直線的交點為(異于原點),在曲線 上取一點,過點平行于軸,交直線于點,過點平行于軸,交曲線于點,接著過點平行于軸,交直線于點,過點平行于軸,交曲線于點,如此下去,可以得到點,,…,,… .  設點的坐標為,.

(Ⅰ)試用表示,并證明;   

(Ⅱ)試證明,且);

(Ⅲ)當時,求證:  ().

查看答案和解析>>

(本題滿分14分)

 已知函數(shù)圖象上一點處的切線方程為

(Ⅰ)求的值;

(Ⅱ)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

(Ⅲ)令,若的圖象與軸交于(其中),的中點為,求證:處的導數(shù)

查看答案和解析>>

(本題滿分14分)

已知曲線方程為,過原點O作曲線的切線

(1)求的方程;

(2)求曲線,軸圍成的圖形面積S;

(3)試比較的大小,并說明理由。

查看答案和解析>>

(本題滿分14分)

已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)

(1)求橢圓方程;

(2)直線過橢圓的右焦點交橢圓于A、B兩點,當△AOB面積最大時,求直線方程。

查看答案和解析>>

(本題滿分14分)

如圖,在直三棱柱中,,,求二面角的大小。    

查看答案和解析>>

 

一、選擇題:本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個是符合題目要求的。

1―8 BDCAABCB

二、填空題:本大題共有6個小題,每小題5分,共30分;請把答案寫在相應的位置上。

9.    10.    11.7    12.    13.    14.

三、解答題:本大題共6個小題,共80分;解答應寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:

   (1)

   (2)由(1)知,

16.(本題滿分13分)

    解:(1)表示經(jīng)過操作以后袋中只有1個紅球,有兩種情形出現(xiàn)

①先從中取出紅和白,再從中取一白到

②先從中取出紅球,再從中取一紅球到

。 ………………7分

   (2)同(1)中計算方法可知:

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本題滿分13分)

解法1:(1)連結MA、B1M,過M作MN⊥B1M,且MN交CC1點N,

    • <center id="11rli"></center>
    • 又∵平面ABC⊥平面BB1C1C,

      平面ABC∩平面BB1C1C=BC,

      ∴AM⊥平面BB1C1C,

      ∵MN平面BB1C1C,

      ∴MN⊥AM。

      ∵AM∩B1M=M,

      ∴MN⊥平面AMB1,∴MN⊥AB1。

      ∵在Rt△B1BM與Rt△MCN中,

      即N為C1C四等分點(靠近點C)。  ……………………6分

         (2)過點M作ME⊥AB1,垂足為R,連結EN,

      由(1)知MN⊥平面AMB1

      ∴EN⊥AB1,

      ∴∠MEN為二面角M―AB1―N的平面角。

      ∵正三棱柱ABC―A1B1C1,BB1=BC=2,

      <nobr id="11rli"><optgroup id="11rli"><strong id="11rli"></strong></optgroup></nobr><em id="11rli"><dfn id="11rli"><form id="11rli"></form></dfn></em>
    • <blockquote id="11rli"><font id="11rli"></font></blockquote>

          • ∴N點是C1C的四等分點(靠近點C)。  ………………6分

               (2)∵AM⊥BC,平面ABC⊥平面BB1C1C,

            且平面ABC∩平面BB1C1C=BC,

            ∴AM⊥平面BB1C1C,

            ∵MN平面BB1C1,∴AM⊥MN,

            ∵MN⊥AB1,∴MN⊥平面AMB1,

             

            18.(本題滿分13分)

            解:(1)

               (2)當

               (3)令

                 ①

                 ②

            ①―②得   ………………13分

            19.(本題滿分14分)

            解:(1)設橢圓C的方程:

               (2)由

                    ①

            由①式得

            20.(本題滿分14分)

            解:(1)

               (2)證明:①在(1)的過程中可知

            ②假設在

            綜合①②可知:   ………………9分

               (3)由變形為:

               

             

             

            <sub id="11rli"></sub>