8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

18.如圖.直三棱柱A1B1C1―ABC中.C1C=CB=CA=2.AC⊥CB. D.E分別為棱C1C.B1C1的中點. 查看更多

 

題目列表(包括答案和解析)

(本小題12分)
如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。


 
(1)證明:AB1⊥BC1;

(2)求點B到平面AB1C1的距離;
(3)求二面角C1—AB1—A1的大小。

查看答案和解析>>

(本小題滿分12分)

如圖,直三棱柱ABC−A1B1C1中, AC = BC = AA1,D是棱AA1的中點,DC1⊥BD.

(Ⅰ)證明:DC1⊥BC;

(Ⅱ)求二面角A1−BD−C1的大。

 

查看答案和解析>>

(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中點,DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大小.

查看答案和解析>>

理 本小題滿分12分)

 
    如圖在直三棱柱ABC – A1B1C1中,∠BAC = 90°,AB = AC = a,AA1 = 2a,D為BC的中點,E為CC1上的點,且CE = CC1

   (I)求三棱錐B – AB1D的體積;

   (II)求證:BE⊥平面ADB1

 (Ⅲ)求二面角B—AB1—D的大小.

查看答案和解析>>

(本小題滿分12分)

如圖,正三棱柱ABCA1B1C1的底面邊長為a,點M在邊 BC上,△AMC1是以點M為直角頂點的等腰直角三角形。

   (Ⅰ)求證點M為邊BC的中點;

   (Ⅱ)求點C到平面AMC1的距離;

   (Ⅲ)求二面角M—AC1—C的大小。

查看答案和解析>>

 

一、選擇題:(本大題共12小題,每小題5分,共60分)

20080801

2. 提示: 故選D

3. 提示:已知得d=3,a5=14,=3a5=42.故選B

4. 提示: 判斷cosα>0,sinα<0,數(shù)形結合.故選B

5. 提示: 設,則,則的圖象按向量平移后的圖象的函數(shù)表達式為:,即,故選D。

<cite id="5nxdq"><rp id="5nxdq"><form id="5nxdq"></form></rp></cite>

              20090505

              7. 提示: 當x>0時,的圖像相同,故可排除(A)、(C)、(D).故選B

              8.=5,得3n=5r+10 , 當r=1時,n=5.故選C

              9. 提示由,得,所以,  點P的軌跡是圓(除去與直線AB的交點).故選B

              10.如圖, 由橢圓及第一定義可得,△ABF的周長為AB+

              AF+BF=AB+2a-AF1+BF=4+AB-AF1)+BF≤4+BF1+

              BF=4+4=8.當且僅當三點A、F1B共線時,不等式取  

              等號,故選B.

              11.提示: 易知數(shù)列{an}是以3為周期的數(shù)列,a1=2,  a2 ,   a3= ,  a4 =2, 

              a2009=2故選B

              12.提示: ∵f ′(x)=g′(x), ∴fx),gx)可以是同一函數(shù),或者僅是常數(shù)項不同的兩個函數(shù), 而得

              fx)-gx)是常數(shù)函數(shù), 即B為最佳答案,故選B.

              二、填空題:(本大題共4小題,每小題5分,共20分)

              13.9;提示:  Tr+1=(xn-r(-r,由題意知:-+=27n=9

              ∴展開式共有10項,二項式系數(shù)最大的項為第五項或第六項,故項的系數(shù)最大的項為第五項。

                                  

              14. ;矩形;若  則以 為鄰邊的平行四邊形對角線相等,所以此四邊形必為矩形,可見的夾角為

              15. ;提示: P=1-=

              16.提示:當直角三角形的斜邊垂直與平面時,所求面積最大。

              三、解答題:(本大題共6小題,共70分)

              17.(本大題10分)(1)不是,假設上的生成函數(shù),則存在正實數(shù)使得恒成立,令,得,與矛盾,

              所以函數(shù)一定不是上的生成函數(shù)…………5分

                 (2)設,因為

              所以,當且僅當時等號成立,

                  而

              ,

                    ………………………10分

              18.(Ⅰ)連接A1C.

              ∵A1B1C1-ABC為直三棱柱,

              ∴CC1⊥底面ABC,

              ∴CC1⊥BC.

                     ∵AC⊥CB,

                     ∴BC⊥平面A1C1CA. ……………1分

                     ∴與平面A1C1CA所成角,

              .

              與平面A1C1CA所成角為.…………4分

                 (Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結BM,

                     ∵BC⊥平面ACC­1A1,

              ∴CM為BM在平面A1C1CA內(nèi)的射影,

                     ∴BM⊥A1G,

              ∴∠CMB為二面角B―A1D―A的平面角,

                     平面A1C1CA中,C1C=CA=2,D為C1C的中點,

                     ∴CG=2,DC=1 在直角三角形CDG中,

              .

                     即二面角B―A1D―A的大小為.……………………8分

                 (Ⅲ)取線段AC的中點F,則EF⊥平面A1BD.

              證明如下:

              ∵A1B1C1―ABC為直三棱柱,

              ∴B1C1//BC,

              ∵由(Ⅰ)BC⊥平面A1C1CA,

              ∴B1C1⊥平面A1C1CA,

              ∵EF在平面A1C1CA內(nèi)的射影為C1F

              當F為AC的中點時,

              C1F⊥A1D,∴EF⊥A1D.

              同理可證EF⊥BD,

              ∴EF⊥平面A1BD.……………………12分

              19.解:(1)從這5名學生中選出2名學生的方法共有種所選2人的血型為O型或A型的的情況共有種故所求概率為 ?…………6分

                 (2) 至少有2名學生符合獻血條件的對立事件是至多1人符合獻血條件

              則所求概率為 …………12分

              20.解:(Ⅰ) 設C(x, y),

              , ,  

              ,

              ∴ 由定義知,動點C的軌跡是以A、B為焦點,長軸長為的橢圓除去與x軸的兩個交點.

              .

              .

              ∴ W:   .………………… 2分

                 (Ⅱ) 設直線l的方程為,

              代入橢圓方程,得.

              整理,得.         ①………………………… 5分

              因為直線l與橢圓有兩個不同的交點P和Q等價于

              ,

              解得.

              ∴ 滿足條件的k的取值范圍為 ………… 7分

                 (Ⅲ)設P(x1,y1),Q(x2,y2),

              =(x1+x2,y1+y2),

              由①得.                 ②

                              ③

              因為,

              所以.……………………… 11分

              所以共線等價于.

              將②③代入上式,

              解得.

              所以不存在常數(shù)k,使得向量共線.…………………… 12分

              21.(本大題12分)

                 (1)n=1時,a1=-4

                 

              ∴數(shù)列{an-4}為等比數(shù)列,公比為2,首項為a1-4=-8 …………5分

                 

                …………7分

              (2)

                 …………10分

              相減得:

                 ………………12分

              22.解: 解:∵f′(x)=4a0x33a1x22a2x+a3為偶函數(shù)。

              ∴a0=a2=0,

              ∴f(x)=a1x3+a3x

              又當x=-時,f(x)取得極大值…………2分

              ∴ 解得

              ∴f(x)=x3-x,f′(x)=2x2-1………………4分

              ⑵解:設所求兩點的橫坐標為x1、x2,

              則(2x12-1)(2x22-1)=-1

              又∵x1,x2∈[-1,1],

              ∴2x12-1∈[-1,1],2x22-1∈[-1,1]

              ∴2x12-1,2x22-1中有一個為1,一個為-1,………………5分

                  ∴x1=0,x2=±1,

                  ∴所求的兩點為(0,0)與(1,-)或(0,0)與(-1,)!8分

              ⑶證明:易知sinx∈[-1,1],cosx∈[-1,1]。

              當0<x<時,f′(x)<0;當<x<1時,f′(x)>0。

              ∴f(x)在[0,]為減函數(shù),在[,1]上為增函數(shù),

              又f(0)=0,f()=- ,f(1)=-,

              而f(x)在[-1,1]上為奇函數(shù),

              ∴f(x)在[-1,1]上最大值為,最小值為-,

              ∴f(sinx)∈[-,],f(cosx)∈[-,],………………10分

              ∴|f(sinx)-f(cosx)|≤|f(sinx)|+|f(cosx)|≤………………………………12分