題目列表(包括答案和解析)
袋子中裝有大小形狀完全相同的m個(gè)紅球和n個(gè)白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個(gè)球,取出的2個(gè)球是同色的概率等于取出的2個(gè)球是異色的概率.
(Ⅰ) 求m,n的值;
(Ⅱ) 從袋子中任取3個(gè)球,設(shè)取到紅球的個(gè)數(shù)為,求
的分布列與數(shù)學(xué)期望.
【解析】第一問中利用,解得m=6,n=3.
第二問中,的取值為0,1,2,3. P(
=0)=
, P(
=1)=
P(=2)=
, P(
=3)=
得到分布列和期望值
解:(I)據(jù)題意得到
解得m=6,n=3.
(II)的取值為0,1,2,3.
P(=0)=
, P(
=1)=
P(=2)=
, P(
=3)=
的分布列為
所以E=2
如圖,,
,…,
,…是曲線
上的點(diǎn),
,
,…,
,…是
軸正半軸上的點(diǎn),且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標(biāo)原點(diǎn)).
(1)寫出、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:(
);
(3)設(shè),對所有
,
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用有,
得到
第二問證明:①當(dāng)時(shí),可求得
,命題成立;②假設(shè)當(dāng)
時(shí),命題成立,即有
則當(dāng)
時(shí),由歸納假設(shè)及
,
得
第三問
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當(dāng)時(shí),可求得
,命題成立;
……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有
,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及
,
得.
即
解得(
不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對所有,
. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
.……………2分
由題意,有.
所以,
x2 |
a2 |
y2 |
b2 |
1 |
2 |
x2 |
a2 |
y2 |
b2 |
AP |
BP |
pc |
y |
x-8 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com