8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

12.(理)函數(shù)的值域是( ) A.[1.2] B.[0.2] 查看更多

 

題目列表(包括答案和解析)

(09年豐臺區(qū)二模理)函數(shù)的值域是  (    )

       A.[-1,1]                                              B.

       C.                                           D.

查看答案和解析>>

(理)已知實數(shù)x、y滿足所表示的平面區(qū)域為M。若函數(shù)
的圖象經(jīng)過區(qū)域M,則實數(shù)k的取值范圍是                 (   )
A.[3,5]B.[—1,1]C.[—1,3]D.

查看答案和解析>>

(理)已知實數(shù)x、y滿足所表示的平面區(qū)域為M。若函數(shù)
的圖象經(jīng)過區(qū)域M,則實數(shù)k的取值范圍是                 (   )

A.[3,5]B.[—1,1]C.[—1,3]D.

查看答案和解析>>

設(shè)函數(shù)f(x)=x+
alnxx
,其中a為常數(shù).
(1)證明:對任意a∈R,y=f(x)的圖象恒過定點;
(2)當a=-1時,判斷函數(shù)y=f(x)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意a∈(0,m]時,y=f(x)恒為定義域上的增函數(shù),求m的最大值.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

1.(理)A。ㄎ模〣 2.(理)B。ㄎ模〣 3.B 4.A 5.D 

6.(理)B。ㄎ模〥 7.B 8.(理)C (文)D 9.D 10.D 11.C

12.(理)A。ㄎ模〢 13.1或0 14. 15.10080° 16.

  17.解析:(1)的分布如下

0

1

2

P

 。2)由(1)知

  ∴ 

  18.解析:(1)以點為坐標原點,所在直線為x軸,所在直線為z軸,建立空間直角坐標系,設(shè)a,(0,+∞).

  ∵ 三棱柱為正三棱柱,則,B,C的坐標分別為:(b,0,0),,,,,(0,0,a). ∴  ,,,

 。2)在(1)條件下,不妨設(shè)b=2,則,

  又A,M,N坐標分別為(b,0,a),(,,0),(,,a).

  ∴ ,.  ∴ 

  同理 

  ∴ △與△均為以為底邊的等腰三角形,取中點為P,則為二面角的平面角,而點P坐標為(1,0,),

  ∴ ,,. 同理 ,

  ∴ 

 ∴ ∠NPM=90°二面角的大小等于90°.

  19.解析:設(shè)派x名消防員前去救火,用t分鐘將火撲滅,總損失為y,則

  y=滅火勞務(wù)津貼+車輛、器械裝備費+森林損失費

   =125tx+100x+60(500+100t

   =

   =

   =

  

  當且僅當,即x=27時,y有最小值36450.

  故應(yīng)該派27名消防員前去救火,才能使總損失最少,最少損失為36450元.

  20.解析:(1)當AB、C三點不共線時,由三角形中線性質(zhì)知

;

  當A,B,C三點共線時,由在線段BC外側(cè),由x=5,因此,當x=1或x=5時,有,

  同時也滿足:.當A、B、C不共線時,

定義域為[1,5].

 。2)(理)∵ . ∴ dyx-1=

  令 tx-3,由,

  兩邊對t求導得:關(guān)于t在[-2,2]上單調(diào)增.

  ∴ 當t=2時,=3,此時x=1. 當t=2時,=7.此時x=5.故d的取值范圍為[3,7].

 。ㄎ模┯,

  ∴ 當x=3時,.當x=1或5時,

  ∴ y的取值范圍為[,3].

  21.解析:(1)令,令y=-x,則

在(-1,1)上是奇函數(shù).

 。2)設(shè),則,而.即 當時,

  ∴ fx)在(0,1)上單調(diào)遞減.

 。3)(理)由于,

  ,,

  ∴ 

  22.解析:(理)由平面,連AH并延長并BCM

  則 由H為△ABC的垂心. ∴ AMBC

  于是 BC⊥平面OAHOHBC

  同理可證:平面ABC

  又 ,是空間中三個不共面的向量,由向量基本定理知,存在三個實數(shù),使得abc

  由 0bc, 同理

  ∴ .            ①

  又 AHOH,

  ∴ =0

                     ②

  聯(lián)立①及②,得 、

  又由①,得 ,,,代入③得:

  ,,,

  其中,于是

 。ㄎ模1)聯(lián)立方程ax+1=y,消去y得:  (*)

  又直線與雙曲線相交于A,B兩點, ∴

  又依題 OAOB,令A,B兩點坐標分別為(,),(),則 

  且 

,而由方程(*)知:代入上式得.滿足條件.

 。2)假設(shè)這樣的點A,B存在,則lyax+1斜率a=-2.又AB中點上,則,

  又 

  代入上式知 這與矛盾.

  故這樣的實數(shù)a不存在.

 


同步練習冊答案