題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為
,求數(shù)列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:
,設
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若當時,不等式
恒成立,求實數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時,
的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(III)設數(shù)列的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有一項是符合題目要求的。
題號
1
2
3
4
5
6
7
8
9
10
答案
B
B
D
D
C
A
C
B
A
C
二、填空題:本大題共6小題,每小題4分,共24分。把答案填在題中橫線上。
11.13 12. 13.2 14.4
15.
16.1005
三、解答題:本大題共6小題,共78分。解答應寫出文字說明,證明過程或演算步驟。
17.(本小題滿分12分)
解(I)
(Ⅱ)由得
,
18.(本小題滿分12分)
解(I)記事件A;射手甲剩下3顆子彈,
(Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件
;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件
(Ⅲ)的取值分別為16,17,18,19,20,
19.(本小題滿分12分)
解法一:
(I)設為
的中點,連結
,
為
的中點,
為
的中點,
==
==
==
(Ⅱ)
(Ⅲ)過點向
作垂線,垂足為
,連結
,
解法二:
分別以所在直線為坐標軸建立空間直角坐標系,
(I)
(Ⅱ)設平面的一個法向量為
(Ⅲ)平面的一個法向量為
20.(本小題滿分12分)
(1)由
切線的斜率切點坐標(2,5+
)
所求切線方程為
(2)若函數(shù)為上單調增函數(shù),
則在
上恒成立,即不等式
在
上恒成立
也即在
上恒成立。
令上述問題等價于
而為在
上的減函數(shù),
則于是
為所求
21.(本小題滿分14分)
解(I)設
(Ⅱ)(1)當直線的斜率不存在時,方程為
(2)當直線的斜率存在時,設直線的方程為
,
設,
,得
22.(本小題滿分14分)
解(I)由題意,令
(Ⅱ)
(1)當時,
成立:
(2)假設當時命題成立,即
當時,
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com