題目列表(包括答案和解析)
已知橢圓的離心率為
,直線
與以原點為圓心、橢圓
的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點為
,右焦點為
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點P,線段
的垂直平分線交
于點M,求動點M的軌跡
的方程;
(Ⅲ)過橢圓的焦點
作直線
與曲線
交于A、B兩點,當
的斜率為
時,直線
上是否存在點M,使
若存在,求出M的坐標,若不存在,說明理由
已知橢圓的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(III)設(shè)與
軸交于點
,不同的兩點
在
上,且滿足
求
的取值范圍.
已知橢圓的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(III)設(shè)與
軸交于點
,不同的兩點
在
上,且滿足
求
的取值范圍.
已知橢圓的離心率為
,直線
與以原點為圓心、以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為
,右焦點為
,直線
過點
,且垂直于橢圓的長軸,動直線
垂直于
,垂足為點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設(shè)與
軸交于點
,不同的兩點
在
上(
與
也不重合),且滿足
,求
的取值范圍.
已知橢圓的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂
直于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(3)當P不在軸上時,在曲線
上是否存在兩個不同點C、D關(guān)于
對稱,若存在,
求出的斜率范圍,若不存在,說明理由。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com