8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

已知數(shù)列 , 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列(k為常數(shù)),那到下列結(jié)論中正確的是      

A.為等比數(shù)列                      B.為等比數(shù)列

C.為等差數(shù)列                      D.為等差數(shù)列

查看答案和解析>>

已知數(shù)列中,為常數(shù)),且單調(diào)遞減,則實數(shù)t的取

值范圍為(   )

A、     B、      C、     D、

 

查看答案和解析>>

已知數(shù)列中,為常數(shù)),且單調(diào)遞減,則實數(shù)t的取
值范圍為(  )
A.B.C.D.

查看答案和解析>>

已知數(shù)列中,為常數(shù)),且單調(diào)遞減,則實數(shù)t的取
值范圍為(  )

A. B. C. D.

查看答案和解析>>

已知數(shù)列{an}中,a1=1,an+1=2an-n2+3n(n∈N+),
(1)是否存在常數(shù)λ,μ,使得數(shù)列{an+λn2+μn}是等比數(shù)列,若存在,求λ,μ的值,若不存在,說明理由;
(2)設(shè)bn=an-n2+n(n∈N+),數(shù)列{bn}的前n項和為Sn,是否存在常數(shù)c,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立?并證明你的結(jié)論;
(3)設(shè)cn=
1
an+n-2n-1
,Tn=c1+c2+…+c3,證明
6n
(n+1)(2n+1)
<Tn
5
3
(n≥2).

查看答案和解析>>

一.選擇題

1―5  CBABA   6―10  CADDA

二.填空題

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答題

數(shù)學理數(shù)學理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

?

        cos              =

 

        由,  ,    即B=              (6分)

                                               (7分)

                                                        (9分)

,                                                         (11分)

的取值范圍是(,1                                                      (13分)

18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

由橢圓,求得兩焦點,                                           (3分)

,又為一條漸近線

, 解得:                                                     (5分)

                                                    (6分)

②設(shè),則                                                      (7分)

      

?                             (9分)

,  ?              (10分)

                                                (11分)

  ?

?                                        (13分)

    <thead id="ocf06"><span id="ocf06"><wbr id="ocf06"></wbr></span></thead>

      1.   單減區(qū)間為[]        (6分)

         

        ②(i)當                                                      (8分)

        (ii)當,

        ,  (),,

        則有                                                                     (10分)

        ,

                                                       (11分)

          在(0,1]上單調(diào)遞減                     (12分)

                                                         (13分)

        20.解:①       

                                                                (2分)

        從而數(shù)列{}是首項為1,公差為C的等差數(shù)列

          即                                (4分)

         

           即………………※              (6分)

        當n=1時,由※得:c<0                                                    (7分)

        當n=2時,由※得:                                                 (8分)

        當n=3時,由※得:                                                 (9分)

            (

                                                  (11分)

                                 (12分)

        綜上分析可知,滿足條件的實數(shù)c不存在.                                    (13分)

        21.解:①設(shè)過A作拋物線的切線斜率為K,則切線方程:

                                                                        (2分)

            即

                                                                                                           (3分)

        ②設(shè)   又

             

                                                                 (4分)

        同理可得 

                                                        (5分)

        又兩切點交于  ,

                                       (6分)

        ③由  可得:

         

                                                        (8分)

                          (9分)

         

         

         

                                                             (11分)

        當且僅當,取 “=”,此時

                                               (12分)

        22.①證明:由,    

          即證

          ()                                    (1分)

          

              即:                          (3分)

          ()    

           

           

                                                                 (6分)

        ②由      

        數(shù)列

                                                      (8分)

        由①可知, 

                            (10分)

        由錯位相減法得:                                       (11分)

                                            (12分)