8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

已知 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知△ABC的外接圓的圓心O,BC>CA>AB,則
OA
OB
OA
OC
,
OB
OC
的大小關(guān)系為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

15、已知y=2x,x∈[2,4]的值域為集合A,y=log2[-x2+(m+3)x-2(m+1)]定義域為集合B,其中m≠1.
(Ⅰ)當(dāng)m=4,求A∩B;
(Ⅱ)設(shè)全集為R,若A⊆CRB,求實數(shù)m的取值范圍.

查看答案和解析>>

已知y=f(x)是定義在[-1,1]上的奇函數(shù),x∈[0,1]時,f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)時,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5

查看答案和解析>>

一.選擇題

1―5  CBABA   6―10  CADDA

二.填空題

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答題

數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

    <meter id="tr8v3"></meter>

    ?

            cos              =

     

            由,  ,    即B=              (6分)

                                                   (7分)

                                                            (9分)

    ,                                                         (11分)

    的取值范圍是(,1                                                      (13分)

    18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

    由橢圓,求得兩焦點,                                           (3分)

    ,又為一條漸近線

    , 解得:                                                     (5分)

                                                        (6分)

    ②設(shè),則                                                      (7分)

          

    ?                             (9分)

    ,  ?              (10分)

                                                    (11分)

      ?

    ?                                        (13分)

  • <blockquote id="tr8v3"></blockquote>
  • <blockquote id="tr8v3"><ul id="tr8v3"><em id="tr8v3"></em></ul></blockquote>

      單減區(qū)間為[]        (6分)

     

    ②(i)當(dāng)                                                      (8分)

    (ii)當(dāng),

    ,  (),,

    則有                                                                     (10分)

    ,

                                                   (11分)

      在(0,1]上單調(diào)遞減                     (12分)

                                                     (13分)

    20.解:①       

                                                            (2分)

    從而數(shù)列{}是首項為1,公差為C的等差數(shù)列

      即                                (4分)

     

       即………………※              (6分)

    當(dāng)n=1時,由※得:c<0                                                    (7分)

    當(dāng)n=2時,由※得:                                                 (8分)

    當(dāng)n=3時,由※得:                                                 (9分)

    當(dāng)

        (

                                              (11分)

                             (12分)

    綜上分析可知,滿足條件的實數(shù)c不存在.                                    (13分)

    21.解:①設(shè)過A作拋物線的切線斜率為K,則切線方程:

                                                                    (2分)

        即

                                                                                                       (3分)

    ②設(shè)   又

         

                                                             (4分)

    同理可得 

                                                    (5分)

    又兩切點交于 

                                   (6分)

    ③由  可得:

     

                                                    (8分)

                      (9分)

     

    當(dāng) 

    當(dāng) 

                                                         (11分)

    當(dāng)且僅當(dāng),取 “=”,此時

                                           (12分)

    22.①證明:由   

      即證

      ()                                    (1分)

    當(dāng)  

          即:                          (3分)

      ()    

    當(dāng)   

       

                                                             (6分)

    ②由      

    數(shù)列

                                                  (8分)

    由①可知, 

                        (10分)

    由錯位相減法得:                                       (11分)

                                        (12分)