8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

12.已知數(shù)列是遞減數(shù)列.且對任意.都有恒成立.則實(shí)數(shù)的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是遞減數(shù)列,且對任意,都有恒成立,則實(shí)數(shù)的取值范圍是         

查看答案和解析>>

已知定義域?yàn)镽的函數(shù)f(x)對任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.給出下列結(jié)論:f(
π
4
)=
1
2
;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號是( 。
A、②③B、②④C、①③D、①④

查看答案和解析>>

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052306021329681346/SYS201205230603339062768729_ST.files/image001.png">的函數(shù)對任意實(shí)數(shù)滿足,且.給出下列結(jié)論:①,②為奇函數(shù),③為周期函數(shù),④內(nèi)單調(diào)遞減.其中,正確的結(jié)論序號是            

 

 

查看答案和解析>>

已知定義域?yàn)镽的函數(shù)f(x)對任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.給出下列結(jié)論:f(
π
4
)=
1
2
;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號是(  )
A.②③B.②④C.①③D.①④

查看答案和解析>>

已知定義域?yàn)镽的函數(shù)f(x)對任意實(shí)數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且.給出下列結(jié)論:;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結(jié)論序號是( )
A.②③
B.②④
C.①③
D.①④

查看答案和解析>>

一.選擇題

1―5  CBABA   6―10  CADDA

二.填空題

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答題

數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

<var id="eovvd"></var>
<nav id="eovvd"></nav>
<pre id="eovvd"><sup id="eovvd"></sup></pre><ruby id="eovvd"></ruby>

      ?

              cos              =

       

              由,  ,    即B=              (6分)

                                                     (7分)

                                                              (9分)

      ,                                                         (11分)

      的取值范圍是(,1                                                      (13分)

      18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

      由橢圓,求得兩焦點(diǎn),                                           (3分)

      ,又為一條漸近線

      , 解得:                                                     (5分)

                                                          (6分)

      ②設(shè),則                                                      (7分)

            

      ?                             (9分)

      ,  ?              (10分)

                                                      (11分)

        ?

      ?                                        (13分)

        <menuitem id="eovvd"><option id="eovvd"><table id="eovvd"></table></option></menuitem>

            單減區(qū)間為[]        (6分)

           

          ②(i)當(dāng)                                                      (8分)

          (ii)當(dāng)

          ,  (),,

          則有                                                                     (10分)

                                                         (11分)

            在(0,1]上單調(diào)遞減                     (12分)

                                                           (13分)

          20.解:①       

                                                                  (2分)

          從而數(shù)列{}是首項(xiàng)為1,公差為C的等差數(shù)列

            即                                (4分)

           

             即………………※              (6分)

          當(dāng)n=1時(shí),由※得:c<0                                                    (7分)

          當(dāng)n=2時(shí),由※得:                                                 (8分)

          當(dāng)n=3時(shí),由※得:                                                 (9分)

          當(dāng)

              (

                                                    (11分)

                                   (12分)

          綜上分析可知,滿足條件的實(shí)數(shù)c不存在.                                    (13分)

          21.解:①設(shè)過A作拋物線的切線斜率為K,則切線方程:

                                                                          (2分)

              即

                                                                                                             (3分)

          ②設(shè)   又

               

                                                                   (4分)

          同理可得 

                                                          (5分)

          又兩切點(diǎn)交于 

                                         (6分)

          ③由  可得:

           

                                                          (8分)

                            (9分)

           

          當(dāng) 

          當(dāng) 

                                                               (11分)

          當(dāng)且僅當(dāng),取 “=”,此時(shí)

                                                 (12分)

          22.①證明:由   

            即證

            ()                                    (1分)

          當(dāng)  

                即:                          (3分)

            ()    

          當(dāng)   

             

                                                                   (6分)

          ②由      

          數(shù)列

                                                        (8分)

          由①可知, 

                              (10分)

          由錯位相減法得:                                       (11分)

                                              (12分)