題目列表(包括答案和解析)
在中,已知
,面積
,
(1)求的三邊的長;
(2)設(shè)是
(含邊界)內(nèi)的一點,
到三邊
的距離分別是
①寫出所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識求出的取值范圍.
【解析】第一問中利用設(shè)中角
所對邊分別為
由得
又由得
即
又由得
即
又
又
得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結(jié)合區(qū)域得到最值。
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當(dāng)且僅當(dāng)
(3)令
∴當(dāng)x
> 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=
在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
設(shè)向量.
(Ⅰ)求;
(Ⅱ)若函數(shù),求
的最小值、最大值.
【解析】第一問中,利用向量的坐標(biāo)表示,表示出數(shù)量積公式可得
第二問中,因為,即
換元法
令得到最值。
解:(I)
(II)由(I)得:
令
.
時,
設(shè)f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由
的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
【解析】第一問中,
即變換分為三步,①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)
的圖象;
③令所得的圖象上各點的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;
第二問中因為,所以
,則
,又
,
,從而
進(jìn)而得到結(jié)論。
(Ⅰ) 解:
即。…………………………………3分
變換的步驟是:
①把函數(shù)的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)
的圖象;
③令所得的圖象上各點的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3分
(Ⅱ) 解:因為,所以
,則
,又
,
,從而
……2分
(1)當(dāng)時,
;…………2分
(2)當(dāng)時;
已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)令函數(shù)(
),求函數(shù)
的最大值的表達(dá)式
;
【解析】第一問中利用令,
,
∴,
第二問中,=
=
=令
,
,則
借助于二次函數(shù)分類討論得到最值。
(Ⅰ)解:令,
,
∴,
∴的單調(diào)遞減區(qū)間為:
…………………4分
(Ⅱ)解:=
=
=
令,
,則
……………………4分
對稱軸
① 當(dāng)即
時,
=
……………1分
② 當(dāng)即
時,
=
……………1分
③ 當(dāng)即
時,
……………1分
綜上:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com