題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為
,求數(shù)列
的前
項(xiàng)和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)
在
軸上,點(diǎn)
在
軸的正半軸,點(diǎn)
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在
軸上移動(dòng)時(shí),求動(dòng)點(diǎn)
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時(shí),
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項(xiàng)和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項(xiàng)和為
。已知正實(shí)數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一、選擇題:
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
B
B
B
C
A
D
B
C
C
B
二、填空題:
題號(hào)
11
12
13
14
15
答案
1000
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
解:(1)由=
,得:
=
,
即:,
又∵0<<
∴
=
.
(2)直線方程為:
.
,
點(diǎn)到直線
的距離為:
.
∵
∴ ∴
又∵0<<
,
∴sin>0,cos
<0
∴
∴sin-cos
=
17.(本小題滿分12分)
解:(1)某同學(xué)被抽到的概率為
設(shè)有名男同學(xué),則
,
男、女同學(xué)的人數(shù)分別為
(2)把名男同學(xué)和
名女同學(xué)記為
,則選取兩名同學(xué)的基本事件有
共
種,其中有一名女同學(xué)的有
種
選出的兩名同學(xué)中恰有一名女同學(xué)的概率為
(3),
,
第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定
18.(本小題滿分14分)
解:(1)分別是棱
中點(diǎn)
|