8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

13.設(shè)分別是橢圓()的左.右焦點(diǎn).若在其右準(zhǔn)線上存在使線段的中垂線過點(diǎn).則橢圓離心率的取值范圍是 .(二)選做題(14-15題.考生只能從中選做一題) 查看更多

 

題目列表(包括答案和解析)

9.設(shè)分別是橢圓)的左、右焦點(diǎn),若在其右準(zhǔn)線上存在使線段的中垂線過點(diǎn),則橢圓離心率的取值范圍是(    )

A.           B.           C.            D.

查看答案和解析>>

設(shè)分別是橢圓)的左、右焦點(diǎn),是其右準(zhǔn)線上縱坐標(biāo)為為半焦距)的點(diǎn),且,則橢圓的離心率是(    )

A.              B.           C.           D.

 

查看答案和解析>>

設(shè)分別是橢圓)的左、右焦點(diǎn),若在直線上存在 使線段的中垂線過點(diǎn),則橢圓離心率的取值范圍是(    )

A.        B.         C.         D.

 

查看答案和解析>>

設(shè)分別是橢圓)的左、右焦點(diǎn),是其右準(zhǔn)線上縱坐標(biāo)為為半焦距)的點(diǎn),且,則橢圓的離心率是(    )

A.           B.           C.           D.

 

查看答案和解析>>

設(shè)分別是橢圓)的左、右焦點(diǎn),是其右準(zhǔn)線上縱坐標(biāo)為為半焦距)的點(diǎn),且,則橢圓的離心率是(   )
A.B.C.D.

查看答案和解析>>

 

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號(hào)

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=,

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                            ,

點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學(xué)被抽到的概率為

設(shè)有名男同學(xué),則,男、女同學(xué)的人數(shù)分別為

(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

(3),

第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點(diǎn)   

    <blockquote id="rwbbr"></blockquote>
    <sub id="rwbbr"></sub>
    1. 平面

      是棱的中點(diǎn)            

      平面

      平面平面

      (2)  

      同理

            

        

      ,       

      ,,    

       

      19.(本小題滿分14分)

      解:(1)由……①,得……②

      ②-①得:    

      所以,求得     

      (2),    

                                                           

       

       

      20.(本小題滿分14分)

      解:(1)由題設(shè)知:

      得:

      解得橢圓的方程為

      (2)

                  

      從而將求的最大值轉(zhuǎn)化為求的最大值

      是橢圓上的任一點(diǎn),設(shè),則有

      ,

      當(dāng)時(shí),取最大值   的最大值為

       

      21.(本小題滿分14分)

      解:(1)由,,得,

      所以,

      (2)由題設(shè)得

      對(duì)稱軸方程為,

      由于上單調(diào)遞增,則有

      (Ⅰ)當(dāng)時(shí),有

      (Ⅱ)當(dāng)時(shí),

      設(shè)方程的根為,

      ①若,則,有    解得

      ②若,即,有

                

      由①②得 。

      綜合(Ⅰ), (Ⅱ)有