題目列表(包括答案和解析)
①焦距為n-m;②短軸長為;③離心率e=
;④以AB方向為x軸的正方向,以AB中點O為坐標原點,則左準線方程為x=
.
其中正確的說法有______________(只填序號即可).
已知點為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
第二問中,設點的坐標為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
∵,∴
確定結論直線與曲線
總有兩個公共點.
然后設點,
的坐標分別
,
,則
,
要使被
軸平分,只要
得到。
(1)設為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
. ………………2分
(2)設點的坐標為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
,……5分
∵,∴
,
∴直線與曲線
總有兩個公共點.(也可根據(jù)點M在橢圓
的內部得到此結論)
………………6分
設點,
的坐標分別
,
,則
,
要使被
軸平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
當時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點,使得
總能被
軸平分
已知圓M:定點
,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足
.
(Ⅰ)求點G的軌跡C的方程;
(Ⅱ)過點(2,0)作直線l,與曲線C交于A,B兩點,O是坐標原點,設,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.
(09年長郡中學一模文)(13分)
已知圓,定點
,點
為圓
上的動點,點
在
上,點
在
上,且滿足
(I)求點的軌跡
的方程;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com