題目列表(包括答案和解析)
解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此
解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)
(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。
設(shè)點(diǎn)是拋物線
的焦點(diǎn),
是拋物線
上的
個(gè)不同的點(diǎn)(
).
(1) 當(dāng)時(shí),試寫出拋物線
上的三個(gè)定點(diǎn)
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)時(shí),若
,
求證:;
(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為
,設(shè)
,
分別過作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè),分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
第三問中①取時(shí),拋物線
的焦點(diǎn)為
,
設(shè),
分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
解:(1)拋物線的焦點(diǎn)為
,設(shè)
,
分別過作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.由拋物線定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿足條件.
(2)設(shè),分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時(shí),拋物線
的焦點(diǎn)為
,
設(shè),
分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
,
則,
.
故,
,
,
是一個(gè)當(dāng)
時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè),分別過
作
拋物線的準(zhǔn)線
的垂線,垂足分別為
,
由及拋物線的定義得
,即
.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這
點(diǎn)都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組
個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)
(
)滿足
”,即:
“當(dāng)時(shí),若
,且點(diǎn)
的縱坐標(biāo)
(
)滿足
,則
”.此命題為真.事實(shí)上,設(shè)
,
分別過作拋物線
準(zhǔn)線
的垂線,垂足分別為
,由
,
及拋物線的定義得,即
,則
,
又由,所以
,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)
為偶數(shù),
關(guān)于
軸對(duì)稱”,即:
“當(dāng)時(shí),若
,且點(diǎn)
與點(diǎn)
為偶數(shù),
關(guān)于
軸對(duì)稱,則
”.此命題為真.(證略)
解:(Ⅰ)設(shè):
,其半焦距為
.則
:
.
由條件知,得
.
的右準(zhǔn)線方程為
,即
.
的準(zhǔn)線方程為
.
由條件知, 所以
,故
,
.
從而:
,
:
.
(Ⅱ)由題設(shè)知:
,設(shè)
,
,
,
.
由,得
,所以
.
而,由條件
,得
.
由(Ⅰ)得,
.從而,
:
,即
.
由,得
.所以
,
.
故.
已知是等差數(shù)列,其前n項(xiàng)和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列與
的通項(xiàng)公式;
(Ⅱ)記,
,證明
(
).
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列
的公比為q.
由,得
,
,
.
由條件,得方程組,解得
所以,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),,
,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:
即,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意,
成立.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com