8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

根據(jù)點到直線的距離公式.得 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.

(Ⅰ)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

【解析】(Ⅰ)根據(jù)極坐標(biāo)與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點到直線的距離公式表示出距離,求最值.

 

查看答案和解析>>

平面直角坐標(biāo)系內(nèi)的向量都可以用一有序?qū)崝?shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設(shè)直線l的傾斜角為α(α90°).在l上任取兩個不同的點,,不妨設(shè)向量的方向是向上的,那么向量的坐標(biāo)是().過原點作向量,則點P的坐標(biāo)是(),而且直線OP的傾斜角也是α.根據(jù)正切函數(shù)的定義得

,

這就是《數(shù)學(xué)2》中已經(jīng)得到的斜率公式.上述推導(dǎo)過程比《數(shù)學(xué)2》中的推導(dǎo)簡捷.你能用向量作為工具討論一下直線的有關(guān)問題嗎?例如:

(1)過點,平行于向量的直線方程;

(2)向量(A,B)與直線的關(guān)系;

(3)設(shè)直線的方程分別是

,

,

那么,的條件各是什么?如果它們相交,如何得到它們的夾角公式?

(4)到直線的距離公式如何推導(dǎo)?

查看答案和解析>>

設(shè)拋物線>0)的焦點為,準(zhǔn)線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為,

則|FE|=,=,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(,),根據(jù)拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:

(Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-

∴直線的方程為:,∴原點到直線的距離=,

設(shè)直線的方程為:,代入得,,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=

∴坐標(biāo)原點到,距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>


同步練習(xí)冊答案